Skip to main content

Advertisement

Log in

TGF-β1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The optimal medium for cardiac differentiation of adult primitive cells remains to be established. We quantitatively compared the efficacy of IGF-1, dynorphin B, insulin, oxytocin, bFGF, and TGF-β1 in inducing cardiomyogenic differentiation. Adult mouse skeletal muscle-derived Sca1+/CD45-/c-kit-/Thy-1+ (SM+) and Sca1-/CD45-/c-kit-/Thy-1+ (SM-) cells were cultured in basic medium (BM; DMEM, FBS, IGF-1, dynorphin B) alone and BM supplemented with insulin, oxytocin, bFGF, or TGF-β1. Cardiac differentiation was evaluated by the expression of cardiac-specific markers at the mRNA (qRT-PCR) and protein (immunocytochemistry) levels. BM+TGF-β1 upregulated mRNA expression of Nkx2.5 and GATA-4 after 4 days and Myl2 after 9 days. After 30 days, BM+TGF-β1 induced the greatest extent of cardiac differentiation (by morphology and expression of cardiac markers) in SM- cells. We conclude that TGF-β1 enhances cardiomyogenic differentiation in skeletal muscle-derived adult primitive cells. This strategy may be utilized to induce cardiac differentiation as well as to examine the cardiomyogenic potential of adult tissue-derived stem/progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  2. Antin PB, Yatskievych T, Dominguez JL, Chieffi P (1996) Regulation of avian precardiac mesoderm development by insulin and insulin-like growth factors. J Cell Physiol 168:42–50

    Article  PubMed  CAS  Google Scholar 

  3. Bani-Yaghoub M, Kendall SE, Moore DP, Bellum S, Cowling RA, Nikopoulos GN, Kubu CJ, Vary C, Verdi JM (2004) Insulin acts as a myogenic differentiation signal for neural stem cells with multilineage differentiation potential. Development 131:4287–4298

    Article  PubMed  CAS  Google Scholar 

  4. Barron M, Gao M, Lough J (2000) Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev Dyn 218:383–393

    Article  PubMed  CAS  Google Scholar 

  5. Bassas L, Lesniak MA, Serrano J, Roth J, de Pablo F (1988) Developmental regulation of insulin and type I insulin-like growth factor receptors and absence of type II receptors in chicken embryo tissues. Diabetes 37:637–644

    Article  PubMed  CAS  Google Scholar 

  6. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzic A, Puceat M (2002) Stem cell differentiation requires a paracrine pathway in the heart. Faseb J 16:1558–1566

    Article  PubMed  Google Scholar 

  7. Brown CO 3rd, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz RJ (2004) The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem 279:10659–10669

    Article  PubMed  CAS  Google Scholar 

  8. Danalache BA, Paquin J, Donghao W, Grygorczyk R, Moore JC, Mummery CL, Gutkowska J, Jankowski M (2007) Nitric oxide signaling in oxytocin-mediated cardiomyogenesis. Stem Cells 25:679–688

    Article  PubMed  CAS  Google Scholar 

  9. Dawn B, Bolli R (2005) Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment. Basic Res Cardiol 100:494–503

    Article  PubMed  CAS  Google Scholar 

  10. Hidai C, Masako O, Ikeda H, Nagashima H, Matsuoka R, Quertermous T, Kasanuki H, Kokubun S, Kawana M (2003) FGF-1 enhanced cardiogenesis in differentiating embryonal carcinoma cell cultures, which was opposite to the effect of FGF-2. J Mol Cell Cardiol 35:421–425

    Article  PubMed  CAS  Google Scholar 

  11. Jankowski M, Danalache B, Wang D, Bhat P, Hajjar F, Marcinkiewicz M, Paquin J, McCann SM, Gutkowska J (2004) Oxytocin in cardiac ontogeny. Proc Natl Acad Sci USA 101:13074–13079

    Article  PubMed  CAS  Google Scholar 

  12. Kodama H, Hirotani T, Suzuki Y, Ogawa S, Yamazaki K (2002) Cardiomyogenic differentiation in cardiac myxoma expressing lineage-specific transcription factors. Am J Pathol 161:381–389

    PubMed  CAS  Google Scholar 

  13. Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, Swijnenburg RJ, Tanaka M, Weissman IL, Robbins RC (2004) Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22:1239–1245

    Article  PubMed  CAS  Google Scholar 

  14. Li TS, Hayashi M, Ito H, Furutani A, Murata T, Matsuzaki M, Hamano K (2005) Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation 111:2438–2445

    Article  PubMed  CAS  Google Scholar 

  15. Li TS, Komota T, Ohshima M, Qin SL, Kubo M, Ueda K, Hamano K (2008) TGF-β induces the differentiation of bone marrow stem cells into immature cardiomyocytes. Biochem Biophys Res Commun 366:1074–1080

    Article  PubMed  CAS  Google Scholar 

  16. Liberatore CM, Searcy-Schrick RD, Vincent EB, Yutzey KE (2002) Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev Biol 244:243–256

    Article  PubMed  CAS  Google Scholar 

  17. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431

    PubMed  CAS  Google Scholar 

  18. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114

    Article  PubMed  Google Scholar 

  19. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9:1654–1666

    Article  PubMed  CAS  Google Scholar 

  20. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    Article  PubMed  CAS  Google Scholar 

  21. Muslin AJ, Williams LT (1991) Well-defined growth factors promote cardiac development in axolotl mesodermal explants. Development 112:1095–1101

    PubMed  CAS  Google Scholar 

  22. Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J (2002) Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci USA 99:9550–9555

    Article  PubMed  CAS  Google Scholar 

  23. Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115:1724–1733

    Article  PubMed  CAS  Google Scholar 

  24. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103:60–68

    Article  PubMed  CAS  Google Scholar 

  25. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  PubMed  CAS  Google Scholar 

  26. Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, Sin YK, Lim CH, Chua T, Teh M, Liu TC, Sim E (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 324:481–488

    Article  PubMed  CAS  Google Scholar 

  27. Solloway MJ, Harvey RP (2003) Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res 58:264–277

    Article  PubMed  CAS  Google Scholar 

  28. Spirito P, Fu YM, Yu ZX, Epstein SE, Casscells W (1991) Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation 84:322–332

    PubMed  CAS  Google Scholar 

  29. Sugi Y, Lough J (1995) Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 168:567–574

    Article  PubMed  CAS  Google Scholar 

  30. Ulloa-Montoya F, Verfaillie CM, Hu WS (2005) Culture systems for pluripotent stem cells. J Biosci Bioeng 100:12–27

    Article  PubMed  CAS  Google Scholar 

  31. Valdimarsdottir G, Mummery C (2005) Functions of the TGF-β superfamily in human embryonic stem cells. Apmis 113:773–789

    Article  PubMed  CAS  Google Scholar 

  32. Ventura C, Maioli M (2000) Opioid peptide gene expression primes cardiogenesis in embryonal pluripotent stem cells. Circ Res 87:189–194

    PubMed  CAS  Google Scholar 

  33. Winitsky SO, Gopal TV, Hassanzadeh S, Takahashi H, Gryder D, Rogawski MA, Takeda K, Yu ZX, Xu YH, Epstein ND (2005) Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol 3:e87

    Article  PubMed  Google Scholar 

  34. Wollert KC (2007) Growth-differentiation factor-15 in cardiovascular disease: from bench to bedside, and back. Basic Res Cardiol 102:412–415

    Article  PubMed  CAS  Google Scholar 

  35. Zuba-Surma EK, Abdel-Latif A, Case J, Tiwari S, Hunt G, Kucia M, Vincent RJ, Ranjan S, Ratajczak MZ, Srour EF, Bolli R, Dawn B (2006) Sca-1 expression is associated with decreased cardiomyogenic differentiation potential of skeletal muscle-derived adult primitive cells. J Mol Cell Cardiol 41:650–660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Barbara Turgeon for expert secretarial assistance. This study was supported in part by NIH grants R01 HL-72410, HL-55757, HL-68088, HL-70897, HL-76794, HL-78825, and R21 HL-89737.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buddhadeb Dawn MD.

Additional information

Returned for 1. Revision: 8 January 2008 1. Revision received: 8 April 2008

Ahmed Abdel-Latif and Ewa K. Zuba-Surma contributed equally to this work.

Electronic supplementary material

Below are the electronic supplementary materials.

ESM 1 (DOC 21 kb)

ESM 2 (AVI 12,481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Latif, A., Zuba-Surma, E.K., Case, J. et al. TGF-β1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells. Basic Res Cardiol 103, 514–524 (2008). https://doi.org/10.1007/s00395-008-0729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0729-9

Key words

Navigation