Skip to main content

Advertisement

Log in

Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function

Role of mitogen-activated protein kinase signaling pathways

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Children with congenital cyanotic heart defects have worse outcomes after surgical repair of their heart defects compared with noncyanotic ones. Institution of extracorporeal circulation in these children exposes the cyanotic heart to reoxygenation injury. Mitogen-activated protein kinase (MAPK) signaling cascades are major regulators of cardiomyocyte function in acute hypoxia and reoxygenation. However, their roles in chronic hypoxia are incompletely understood. We determined myocardial activation of the three major MAPKs, c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase-1/2 (ERK1/2), and p38-MAPK in adult rats exposed to hypoxia (FIO2 = 0.10) for varying periods of time. Myocardial function was analyzed in isolated perfused hearts. Acute hypoxia stimulated JNK and p38-MAPK activation. Chronic hypoxia (2 weeks) was associated with increased p38-MAPK (but not JNK) activation, increased apoptosis, and impaired posthypoxic recovery of LV function. Brief normoxic episodes (1 h/day) during chronic hypoxia abolished p38-MAPK activation, stimulated MEK-ERK1/2 activation modestly, and restored posthypoxic LV function. In vivo p38-MAPK inhibition by SB203580 or SB202190 in chronically hypoxic rats restored posthypoxic LV function. These results indicate that sustained hypoxemia maintains p38-MAPK in a chronically activated state that predisposes to myocardial impairment upon reoxygenation. Brief normoxic episodes during chronic hypoxia prevent p38-MAPK activation and restore posthypoxic recovery of myocardial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelli S, Ansite J, Roduit R, Borsello T, Matsumoto I, Sawada T, Allaman-Pillet N, Henry H, Beckmann JS, Hering BJ, Bonny C (2004) Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes 53:2815–2823

    PubMed  CAS  Google Scholar 

  2. Baker JE, Curry BD, Olinger GN, Gross GJ (1997) Increased tolerance of the chronically hypoxic immature heart to ischemia. Contribution of the KATP Channel. Circulation 95:1278–1285

    PubMed  CAS  Google Scholar 

  3. Corno A, Milano G, Samaja M, Tozzi P, von Segesser LK (2002) Chronic hypoxia. A model for cyanotic heart defects. J Thorac Cardiovasc Surg 124:105–112

    Article  PubMed  Google Scholar 

  4. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 251:95–105

    Article  Google Scholar 

  5. Del Nido PJ, Mickle DA, Wilson GJ, Benson LN, Coles JG, Trusler GA, Williams WG (1987) Evidence of myocardial free radical injury during elective repair of tetralogy of Fallot. Circulation 76(5 Pt 2):V174-V179

    PubMed  Google Scholar 

  6. Dhaliwal H, Kirschenbaum LA, Ranfhawa AK, Singal PK (1990) Correlation between antioxidant changes during hypoxia and recovery on reoxygenation. Am J Physiol 261:H632–H638

    Google Scholar 

  7. Forkel J, Chen X, Wandinger S, Keser F, Duschin A, Schwanke U, Frede S, Massoudy P, Schulz R, Jakob H, Heusch G (2004) Responses of chronically hypoxic rat hearts to ischemia: KATP channel blockade does not abolish increased RV tolerance to ischemia. Am J Physiol Heart Circ Physiol 286:H545–H551

    Article  PubMed  CAS  Google Scholar 

  8. Fryer R, Pratt P, Hsu A, Gross G (2001) Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296:642–649

    PubMed  CAS  Google Scholar 

  9. Fujiwara T, Kurtts T, Anderson W, Heinle J, Mayer JE Jr (1998) Myocardial protection in cyanotic neonatal lambs. J Thorac Cardiovasc Surg 96:700–710

    Google Scholar 

  10. Haddad JJ (2001) VX-745. Vertex Pharmaceuticals. Curr Opin Investig Drugs 2:1070–1076

    PubMed  CAS  Google Scholar 

  11. Ihnken K, Morita K, Buckberg GD, Sherman MP, Young HH (1995) Studies of hypoxemic/reoxygenation injury: without aortic clamping. III. Comparison of the magnitude of damage by hypoxemia/reoxygenation versus ischemia/reperfusion. J Thorac Cardiovasc Surg 110(4 Pt 2):1182–1189

    PubMed  CAS  Google Scholar 

  12. Imura H, Caputo M, Parry A, Pawade A, Angelini GD, Suleiman MS (2001) Age-dependent and hypoxia-related differences in myocardial protection during pediatric open heart surgery. Circulation 103:1551–1556

    PubMed  CAS  Google Scholar 

  13. Jung F, Weiland U, Johns RA, Ihling C, Dimmeler S (2001) Chronic hypoxia induces apoptosis in cardiac myocytes: a possible role for Bcl-2-like proteins. Biochem Biophys Res Comm 286:419–425

    Article  PubMed  CAS  Google Scholar 

  14. Liao P, Wang SQ, Wang S, Zheng M, Zheng M, Zhang SJ, Cheng H, Wang Y, Xiao RP (2002) p38 mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ Res 90:190–196

    Article  PubMed  CAS  Google Scholar 

  15. Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouyssegur J, Pages G, De Windt LJ, Doevendans PA, Molkentin JD (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109:1938–1941

    Article  PubMed  CAS  Google Scholar 

  16. Lupinetti FM, Wareing TH, Huddleston CB, Collins JC, Boucek RJ Jr, Bender HW Jr, Hammon JW Jr (1985) Pathophysiology of chronic cyanosis in a canine model. Functional and metabolic response to global ischemia. J Thorac Cardiovasc Surg 90:291–296

    PubMed  CAS  Google Scholar 

  17. McElhinney DB, Wernovsky G (2001) Outcomes of neonates with congenital heart disease. Curr Opin Pediatr 13:104–110

    Article  PubMed  CAS  Google Scholar 

  18. Meerson FZ, Gomzakov OA, Shimkovich MV (1973) Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol 31:30–34

    Article  PubMed  CAS  Google Scholar 

  19. Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn-Schmiedeberg’s Arch Pharmacol 363:245–266

    Article  CAS  Google Scholar 

  20. Milano G, Bianciardi P, Corno AF, Raddatz E, Morel S, von Segesser LK, Samaja M (2004) Myocardial impairment in chronic hypoxia is abolished by short aeration episodes: Involvement of K+ ATP channels. Exp Biol Med 229:1196–1205

    CAS  Google Scholar 

  21. Modi P, Imura H, Caputo M, Pawade A, Parry A, Angelini GD, Suleiman MS (2002) Cardiopulmonary bypass-induced myocardial reoxygenation injury in pediatric patients with cyanosis. J Thorac Cardiovasc Surg 124:1035–1036

    Article  PubMed  CAS  Google Scholar 

  22. Najm HK, Wallen WJ, Belanger MP, Williams WG, Coles JG, Van Arsdell GS, Black MD, Boutin C, Wittnich C (2000) Does the degree of cyanosis affect myocardial adenosine triphosphate levels and function in children undergoing surgical procedures for congenital heart disease? J Thorac Cardiovasc Surg 119:515–524

    Article  PubMed  CAS  Google Scholar 

  23. Rafiee P, Shi Y, Kong X, Pritchard KA Jr, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Su J, Baker JE (2002) Activation of protein kinases in chronically hypoxic infant human and rabbit hearts. Role in cardioprotection. Circulation 106:239–245

    Article  PubMed  CAS  Google Scholar 

  24. Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAPK is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700

    Article  PubMed  CAS  Google Scholar 

  25. Silverman NA, Kohler J, Levitsky S, Pavel DG, Fang RN, Feinberg H (1984) Chronic hypoxemia depresses global ventricular function and predisposes the depletion of high-energy phosphates during cardioplegic arrest: implications for surgical repair of cyanotic congenital heart defects. Ann Thorac Surg 37:304–308

    Article  PubMed  CAS  Google Scholar 

  26. Tähepold P, Ruusalepp A, Li G, Vaage J, Starkopf J, Valen G (2002) Cardioprotection by breathing hyperoxic gas – relation to oxygen concentration and exposure time in rats and mice. Eur J Card Thorac Surg 21:987–994

    Article  Google Scholar 

  27. Zhou X, Zhai X, Ashraf M (1996) Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation 93:1177–1184

    PubMed  CAS  Google Scholar 

  28. Zhu HF, Dong JW, Zhu WZ, Ding HL, Zhou Z (2003) ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci 73:1275–1287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Teo Rossi di Montelera Foundation, the Swiss Cardiology Foundation, the Fondation Vaudoise de Cardiologie, the Fondation Lausannoise de Transplantation, and the “Heart Remodeling in Health and Disease” program sponsored by the Swiss University Conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vassalli.

Additional information

Returned for 1st revision: 25 November 2005 1st Revision received: 10 February 2006 Returned for 2nd revision: 28 November 2005 2nd Revision received: 3 March February 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, S., Milano, G., Ludunge, K.M. et al. Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function. Basic Res Cardiol 101, 336–345 (2006). https://doi.org/10.1007/s00395-006-0596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0596-1

Keywords

Navigation