Skip to main content

Advertisement

Log in

Differential activation of mitogen-activated protein kinases in ischemic and nitroglycerin-induced preconditioning

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Previous studies have shown that the cardioprotective effect of ischemic preconditioning (IPC) can be mimicked pharmacologically with clinically relevant agents, including nitric oxide (NO) donors. However, whether pharmacological preconditioning shares the same molecular mechanism with IPC is not fully elucidated. The present study aimed to determine the activation of mitogen-activated protein kinases (MAPKs) (ERK1/2, p38 MAPK and p46/p54 JNKs) during ischemia and at reperfusion in nitroglycerin-induced preconditioning as compared to IPC and to correlate this with the conferred cardioprotection in anesthetized rabbits. Sixty minutes of intravenous administration of nitroglycerin was capable of inducing both early and late phase preconditioning in anesthetized rabbits, as it was expressed by the reduction of infarct size. Despite the cardioprotective effect conferred by both ischemic and nitroglycerin-induced preconditioning, there was a differential phosphorylation of MAPKs between the studied groups. p38 MAPK was activated early in ischemia in both ischemic and the early nitroglycerin-induced preconditioning while JNKs were markedly increased only after IPC. Furthermore, in these groups, ERK1/2 were activated during reperfusion. A different profile was observed in the late preconditioning induced by nitroglycerin with increased p38 MAPK and ERK1/2 phosphorylation during late ischemia. No activation of JNKs was observed at any time point in this group. It seems that activation of individual MAPK subfamilies depends on the nature of preconditioning stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baines CP, Pass JM, Ping P (2001) Protein kinases and kinase-modulated effects in the late phase of ischemic preconditioning. Basic Res Cardiol 96:207–218

    Article  PubMed  CAS  Google Scholar 

  2. Baxter GF, Goma FM, Yellon DM (1997) Characterisation of the infarct limiting effect of delayed preconditioning: time course and dose dependency studies in rabbit myocardium. Basic Res Cardiol 92:159–167

    Article  PubMed  CAS  Google Scholar 

  3. Baxter GF, Ferdinandy P (2001) Delayed preconditioning of myocardium: current perspectives. Basic Res Cardiol 96:329–344

    Article  PubMed  CAS  Google Scholar 

  4. Behrends M, Schulz R, Post H, Alexandrov A, Belosjorow S, Michel MC, Heusch G (2000) Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol 279:H1111–H1119

    CAS  Google Scholar 

  5. Bolli R, Dawn B, Tang X-L, Qiu Y, Ping P, Xuan Y-T, Jones WK, Takano H, Guo Y, Zhang J (1998) The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol 93:325–338

    Article  PubMed  CAS  Google Scholar 

  6. Caroll R, Yellon DM (2000) Delayed cardioprotection in a human cardiomyocyte-derived cell line: the role of adenosine, p38MAP kinase and mitochondrial KATP. Basic Res Cardiol 95:243–249

    Article  Google Scholar 

  7. Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62:79–109

    Article  PubMed  CAS  Google Scholar 

  8. Dana A, Skarli M, Papakrivopoulou J, Yellon DM (2000) Adenosine A(1) receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res 86(9):989–997

    PubMed  CAS  Google Scholar 

  9. Downey JM, Cohen MV (1997) Arguments in favour of protein kinase C playing an important role in ischemic preconditioning. Basic Res Cardiol 92(Suppl 2):37–39

    PubMed  Google Scholar 

  10. Downey JM, Cohen MV (2000) Do mitochondrial KATP channels serve as triggers rather than end-effectors of ischemic preconditioning’s protection? Basic Res Cardiol 95:272–274

    Article  PubMed  CAS  Google Scholar 

  11. Eisen A, Fisman EZ, Rubenfire M, Freimark D, McKechnie R, Tenenbaum A, Motro M, Adler Y (2004) Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis 172(2):201–210

    Article  PubMed  CAS  Google Scholar 

  12. Fryer RM, Hsu AK, Gross GJ (2001) ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Res Cardiol 96:136–142

    Article  PubMed  CAS  Google Scholar 

  13. Fryer RM, Patel HH, Hsu AK, Gross GJ (2001) Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol 281(3):H1184–1192

    CAS  Google Scholar 

  14. Fryer RM, Pratt PF, Hsu AK, Gross GJ (2001) Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296:642–649

    PubMed  CAS  Google Scholar 

  15. Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM (1995) Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 77:611–621

    PubMed  CAS  Google Scholar 

  16. Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol 285(3):H921–H930

    CAS  Google Scholar 

  17. Hausenloy DJ, Tsang A, Mocanu M, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol 288:H971–H976

    CAS  Google Scholar 

  18. Heusch G (2001) Nitroglycerin and delayed preconditioning in humans. Yet another new mechanism for an old drug? Circulation 103:2876–2878

    PubMed  CAS  Google Scholar 

  19. Hill M, Takano H, Tang XL, Kodani E, Shirk G, Bolli R (2001) Nitroglycerin induces late preconditioning against myocardial infarction in conscious rabbits despite development of nitrate tolerance. Circulation 104(6):694–699

    PubMed  CAS  Google Scholar 

  20. Iliodromitis EK, Cokkinos P, Zoga A, Steliou I, Vrettou AR, Kremastinos DT (2003) Oral nicorandil recaptures the waned protection from preconditioning in vivo. Br J Pharmacol 138(6):1101–1106

    Article  PubMed  CAS  Google Scholar 

  21. Iliodromitis EK, Gaitanaki C, Lazou A, Bofilis E, Karavolias GK, Beis I, Kremastinos DT (2002) Dissociation of stress-activated protein kinase (p38-MAPK and JNKs) phosphorylation from the protective effect of preconditioning in vivo. J Mol Cell Cardiol 34(8):1019–1028

    Article  PubMed  CAS  Google Scholar 

  22. Lasley RD, Keith BJ, Kristo G, Yoshimura Y, Mentzer Jr RM (2005) Delayed adenosine A1 receptor preconditioning in rat myocardium is MAPK-dependent but iNOS-independent. Am J Physiol 289:H785–H791

    Article  CAS  Google Scholar 

  23. Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R (2001) Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation 103(24):2935–2941

    PubMed  CAS  Google Scholar 

  24. Liu Y, Tsuchida A, Cohen MV, Downey JM (1995) Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 27:883–892

    Article  PubMed  CAS  Google Scholar 

  25. Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 363(3):245–266

    Article  PubMed  CAS  Google Scholar 

  26. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  27. Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV (2000) Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 32(7):1159–1167

    Article  PubMed  CAS  Google Scholar 

  28. Ping P, Zhang J, Cao X, Li RC, Kong D, Tang X, Manchikalapudi S, Auchampach JA, Black RG, Bolli R (1999) PKC-dependent activation of p44/42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol 276:H1468–H1481

    PubMed  CAS  Google Scholar 

  29. Ping P, Zhang J, Huang S, Cao X, Tang XL, Li RC, Zheng YT, Qiu Y, Clerk A, Sugden P, Han J, Bolli R (1999) PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. Am J Physiol. 277:H1771–H1785

    PubMed  CAS  Google Scholar 

  30. Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, Banerjee S, Dawn B, Balafonova Z, Bolli R (1999) Isoform selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide- induced and ischemia-induced preconditioning. Circ Res 84:587–604

    PubMed  CAS  Google Scholar 

  31. Post H, Schulz R, Behrends M, Gres P, Umschlag C, Heusch G (2000) No involvement of endogenous nitric oxide in classical preconditioning in swine. J Mol Cell Cardiol 32:725–733

    Article  PubMed  CAS  Google Scholar 

  32. Qin Q, Yang XM, Cui L, Critz SD, Cohen MV, Browner NC, Lincoln TM, Downey JM (2004) Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. Am J Physiol 287:H712–H718

    CAS  Google Scholar 

  33. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G (2001) Signal transduction of ischemic preconditioning. Cardiovasc Res 52(2):181–198

    Article  PubMed  CAS  Google Scholar 

  34. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357

    PubMed  CAS  Google Scholar 

  35. Shinmura K, Tang XL, Takano H, Hill M, Bolli R (1999) Nitric oxide donors attenuate myocardial stunning in conscious rabbits. Am J Physiol 277:H2495–H2503

    PubMed  CAS  Google Scholar 

  36. Takeishi Y, Huang Q, Wang T, Glassman M, Yoshizumi M, Baines CP, Lee JD, Kawakatsu H, Che W, Lerner-Marmarosh N, Zhang C, Yan C, Ohta S, Walsh RA, Berk BC, Abe J (2001) Src family kinase and adenosine differentially regulate multiple MAP kinases in ischemic myocardium: modulation of MAP kinases activation by ischemic preconditioning. J Mol Cell Cardiol 33(11):1989–2005

    Article  PubMed  CAS  Google Scholar 

  37. Talmor D, Applebaum A, Rudich A, Shapira Y, Tirosh A (2000) Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass. Circ Res 86:1004–1007

    PubMed  CAS  Google Scholar 

  38. Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1 selective adenosine analogues protects the heart against infarction. Circulation 85:659–665

    PubMed  CAS  Google Scholar 

  39. Vasara E, Seraskeris S, Lazou A (2002) Activation of α1-adrenoceptors is not essential for the mediation of ischaemic preconditioning in rat heart. Clin Exp Pharmacol Physiol 29:11–17

    Article  PubMed  CAS  Google Scholar 

  40. Wang GY, Wu S, Pei JM, Yu XC, Wong TM (2001) Kappa but not delta-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am J Physiol 280:H384–H391

    CAS  Google Scholar 

  41. Weinbrenner C, Liu G, Cohen M, Downey J (1997) Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol 29:2383–2391

    Article  PubMed  CAS  Google Scholar 

  42. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83(4):1113–1151

    PubMed  CAS  Google Scholar 

  43. Zhao TC, Hines DS, Kukreja RC (2001) Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial K(ATP) channels. Am J Physiol 280(3):H1278–H1285

    CAS  Google Scholar 

  44. Zhou ZH, Peng J, Ye F, Li NS, Deng HW, Li YJ (2002) Delayed cardioprotection afforded by nitroglycerin is mediated by a-calcitonin gene related peptide. Naunyn Schmiedeberg’s Arch Pharmacol 365:253–259

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a grant from the Greek Ministry of Education (PYTHAGORAS, 70/3/7399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antigone Lazou.

Additional information

Returned for 1st revision: 18 November 2005 1st revision received: 3 January 2006

Returned for 2nd revision: 19 January 2006 2nd revision received: 6 February 2006

Returned for 3rd revision: 22 February 2006 3rd revision received: 1 March 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iliodromitis, E.K., Gaitanaki, C., Lazou, A. et al. Differential activation of mitogen-activated protein kinases in ischemic and nitroglycerin-induced preconditioning. Basic Res Cardiol 101, 327–335 (2006). https://doi.org/10.1007/s00395-006-0594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0594-3

Keywords

Navigation