Skip to main content

Advertisement

Log in

Plasma cathepsin D isoforms and their active metabolites increase after myocardial infarction and contribute to plasma renin activity

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Plasma renin activity (PRA) is often found to increase after myocardial infarction (MI). Elevated PRA may contribute to increased myocardial angiotensin II that is responsible for maladaptive remodeling of the myocardium after MI. We hypothesized that MI would also result in cardiac release of cathepsin D, a ubiquitous lysosomal enzyme with high renin sequence homology. Cathepsin D release from damaged myocardial tissue could contribute to angiotensin formation by acting as an enzymatic alternate to renin. We assessed circulating renin and cathepsin D from both control and MI patient plasma (7–20 hours after MI) using shallow gradient focusing that allowed for independent measurement of both enzymes. Cathepsin D was increased significantly in the plasma after MI (P < 0.001). Furthermore, circulating active cathepsin D metabolites were also signi.cantly elevated after MI (P < 0.04), and contained the majority of cathepsin D activity in plasma. Spiking control plasma with cathepsin D resulted in a variable but significant (P = 0.005) increase in PRA using a clinical assay. We conclude that 7–20 hours after MI, plasma cathepsin D is significantly elevated and most of the active enzymatic activity is circulating as plasma metabolites. Circulating cathepsin D can falsely increase clinical PRA determinations, and may also provide an alternative angiotensin formation pathway after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguliar CF, Dhanaraj V, Guruprasad K, Dealwis C, Badasso M, Cooper JB, Wood SP, Blundell TL (1995) Comparisons of the three-dimensional structures, speci- .cties, and glycosylation of renins, yeast proteinase A and cathepsin D. Advances in Experimental Medicine and Biology 362:155–166

    PubMed  Google Scholar 

  2. Barlucchi L, Leri A, Dostal DE, Fiordaliso F, Tada H, Hintze TH, Kajstura J, Nadal- Ginard B, Anversa P (2001) Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 88:298–304

    CAS  PubMed  Google Scholar 

  3. Barrett AJ (1977) Cathepsin D and other carboxyl proteinases. In: Barrett AJ (ed) Proteinases in mammalian cells and tissues. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 209–248

  4. Barrett AJ (1981) α2-Macroglobulin. Methods in Enzymology 80 [54]:737–754

    CAS  PubMed  Google Scholar 

  5. Dorer FE, Lentz KE, Kahn JR, Levine M, Skeggs LT (1978) A comparison of the substrate speci.cities of cathepsin D and pseudorenin. J Biol Chem 253:3140–3142

    CAS  PubMed  Google Scholar 

  6. Figueiredo, AFS, Takii, Y, Tsuji, H, Kato, K, Inagami, T (1983) Rat kidney renin and cathespin D: Puri.cation and comparison of properties. Biochem 22:5476–5481

    CAS  Google Scholar 

  7. Fordis C M, Megorden JS, Ropchak TG, Kesier HR (1983) Absence of renin-like activity in rat aorta and microvessels. Hypertension 5:635–641

    CAS  PubMed  Google Scholar 

  8. Fukuda N, Satoh C, Hu WY, Soma M, Kubo A, Kishioka H, Watanabe Y, Izumi Y, Kanmatsuse K (1999) Production of angiotensin II by homogeneous cultures of vascular smooth muscle cells from spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 19:1210–1217

    CAS  PubMed  Google Scholar 

  9. Gabel SA, Cross HR, London RE, Steenbergen C, Murphy E (1997) Decreased intracellular pH is not due to increased H+ extrusion in preconditioned rat hearts. Am J Physiol 273 (5 pt 2):H2257–H2262

    CAS  PubMed  Google Scholar 

  10. Hackenthal E, Hackenthal R, Hilgenfeldt U (1978) Isorenin, pseudorenin, cathepsin D and renin: a comparative enzymatic study of angiotensin-forming enzymes. Biochimica et Biophysica Acta 522:574–588

    Article  CAS  PubMed  Google Scholar 

  11. Hanssens M, Pijnenborg P, Keirse MJNC, Vercruysse L, Verbist L, Assche FAV (1998) Renin-like immunoreactivity in uterus and placenta from normotensive and hypertensive pregnancies. European J of Obstetrics & Gynecology and Repro Bio 81:177–184

    Google Scholar 

  12. Katwa LC, Campbell SE, Tyagi SC, Lee SJ, Cicila GT, Weber KT (1997) Cultured myofibroblasts generate angiotensin peptides de Novo. J Mol Cell Cardiol 29:1375–1386

    Article  CAS  PubMed  Google Scholar 

  13. Katwa LC, Tyagi SC, Campbell SE, Lee SJ, Cicila GT, Weber KT (1996) Valvular interstitial cells express angiotensinogen and cathepsin D, and generate angiotensin peptides. International Journal of Biochemistry and Cell Biology 28:807–821

    Google Scholar 

  14. Katz SA, Abraham PA, Opsahl JA (1992) Measurement of human active renin heterogeneity. Renal Physiol Biochem 15:240–248

    CAS  PubMed  Google Scholar 

  15. Katz SA, Opsahl JA, Abraham PA, Gardner MJ (1994) The relationship between renin isoelectric forms and renin glycoforms. Am J Physiol 267:R244–R252

    CAS  PubMed  Google Scholar 

  16. Katz SA, Opsahl JA, Forbis LM (2001) Myocardial enzymatic activity of renin and cathepsin D before and after bilateral nephrectomy. Basic Res Cardiol 96:659–668

    Article  CAS  PubMed  Google Scholar 

  17. Katz SA, Opsahl JA, Lunzer MM, Forbis LM, Hirsch AT (1997) Effect of bilateral nephrectomy on active renin, angiotensinogen, and renin glycoforms in plasma and myocardium. Hypertension 30 (Part 1):259–266

    CAS  PubMed  Google Scholar 

  18. Laury-Kleintop LD, Coronel EC, Lange MK, Tachovsky T, Longo S, Tucker S, Alhadeff JA (1995) Western blotting and isoform analysis of cathepsin D from normal and malignant human breast cell lines. Breast Cancer Research and Treatment 35:211–220

    Google Scholar 

  19. Mayanskaya SD, Mayanskaya NN, Efremov AV, Yakobson GS (2000) Activity of lysosomal apparatus in rat myocardium during experimental coronary and noncoronary myocardial damage. Bulletin of Experimental Biology and Medicine 129 (6):530–532

    CAS  PubMed  Google Scholar 

  20. McAlpine HM, Morton JJ, Leckie B, Rumley A, Gillen G, Dargie HJ (1988) Neuroendocrine activation after acute myocardial infarction. Br Heart J 60:117–124

    CAS  PubMed  Google Scholar 

  21. Roberg K, Öllinger K (1998) Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol 152:1151–1156

    CAS  PubMed  Google Scholar 

  22. Rouleau JL, Moye LA, de Champlain J, Klein M, Bichet D, Packer M, Dagenais G, Sussex B, Arnold JM, Sestier F, Parker JO, McEwan MMP, Bernstein V, Cuddy TE, Delage F, Nadeau C, Lamas GA, Gottlieb SS, McCans J, Pfeffer MA (1991) Activation of neurohumoral systems following acute myocardial infarction. Am J Cardiol 68:80D–86D

    Article  CAS  PubMed  Google Scholar 

  23. Sapolsky AI, Woessner JF (1972) Multiple forms of cathepsin D from bovine uterus. J Biol Chem 247:2069–2076

    CAS  PubMed  Google Scholar 

  24. Saupe KW, Lim CC, Ingwall JS, Apstein CS, Eberli FR (2000) Comparison of hearts with 2 types of pressure-overload left ventricular hypertrophy. Hypertension 35:1167–1172

    CAS  PubMed  Google Scholar 

  25. Stahl GL, Terashita Z, Lefer AM (1988) Role of platelet activating factor in propagation of cardiac damage during myocardial ischemia. J Pharmacol Exp Ther 244:898–904

    CAS  PubMed  Google Scholar 

  26. Thomas DJ, Richards AD, Kay J (1989) Inhibition of aspartic proteinases by alpha 2-macroglobulin. Biochem J 259:905–907

    CAS  PubMed  Google Scholar 

  27. von Lutterotti N, Catanzaro DF, Sealey JE, Laragh JH (1994) Renin is not synthesized by cardiac and extrarenal vascular tissues. Circ 89:458–470

    CAS  Google Scholar 

  28. Weber KT (2001) Cardioreparation in hypertensive heart disease. Hypertension 38:588–591

    CAS  PubMed  Google Scholar 

  29. Willaims B (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol 87 (8A):10C–17C

    PubMed  Google Scholar 

  30. Wright LM, Levy ES, Patel NP, Alhadeff JA (1997) Purification and characterization of cathepsin D from normal human breast tissue. Journal of Protein Chemistry 16:171–181

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Katz Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naseem, R.H., Hedegard, W., Henry, T.D. et al. Plasma cathepsin D isoforms and their active metabolites increase after myocardial infarction and contribute to plasma renin activity. Basic Res Cardiol 100, 139–146 (2005). https://doi.org/10.1007/s00395-004-0499-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-004-0499-3

Key words

Navigation