Skip to main content
Log in

Blended-protein changes body weight gain and intestinal tissue morphology in rats by regulating arachidonic acid metabolism and secondary bile acid biosynthesis induced by gut microbiota

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The impact of dietary nutrients on body growth performance and the composition of gut microbes and metabolites is well-established. In this study, we aimed to determine whether dietary protein can regulate the physiological indexes and changes the intestinal tissue morphology in rats, and if dietary protein was a crucial regulatory factor for the composition, function, and metabolic pathways of the gut microbiota.

Method

A total of thirty male Sprague Dawley (SD) rats (inbred strain, weighted 110 ± 10 g) were randomly assigned to receive diets containing animal-based protein (whey protein, WP), plant-based protein (soybean protein, SP), or a blended protein (soybean-whey proteins, S-WP) for a duration of 8 weeks. To investigate the effects of various protein supplement sources on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing association study and fecal metabolomics profiling on the SD rats. Additionally, we performed analyses of growth indexes, serum biochemical indexes, and intestinal morphology.

Results

The rats in S-WP and WP group exhibited a significantly higher body weight and digestibility of dietary protein compared to the SP group (P < 0.05). The serum total protein content of rats in the WP and S-WP groups was significantly higher (P < 0.05) than that in SP group, and the SP group exhibited significantly lower (P < 0.05) serum blood glucose levels compared to the other two groups. The morphological data showed the rats in the S-WP group exhibited significantly longer villus height and shallower crypt depth (P < 0.05) than the SP group. The gut microbial diversity of the SP and S-WP groups exhibited a higher level than that of the WP group, and the microbiomes of the WP and S-WP groups are more similar compared to those of the SP group. The Arachidonic acid metabolism pathway is the most significant KEGG pathway when comparing the WP group and the SP group, as well as when comparing the SP group and the S-WP group.

Conclusion

The type of dietary proteins exerted a significant impact on the physiological indices of SD rats. Intake of S-WP diet can enhance energy provision, improve the body’s digestion and absorption of nutrients, as well as promote intestinal tissue morphology. In addition, dietary protein plays a crucial role in modulating fecal metabolites by regulating the composition of the gut microbiota. Metabolomics analysis revealed that the changes in the levels of arachidonic acid metabolites and secondary bile acid metabolite induced by Clostridium_sensu_stricto_1 and [Eubacterium]_coprostanoligenes_group maybe the primarily causes of intestinal morphological differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SD:

Sprague Dawley

SP:

Soybean protein

TP:

Total protein

VH:

Villus height

QC:

Quality control

KEGG:

Kyoto Encyclopedia of Genes and Genomes

TG:

Triglyceride

HDL-C:

High density lipoprotein-cholesterol

LDL-C:

Low density lipoprotein-cholesterol

LEFSe:

Linear discriminate analysis effect size

OPLS-DA:

Orthogonal partial least squares-discriminant analysis

F/B :

Firmicutes/Bacteroidetes

AA:

Arachidonic acid

VIP:

Variable importance in projection

TXA2:

Thromboxane A2

SBAs:

Secondary bile acids

PG:

Prostaglandin

WP:

Whey protein

S-WP:

Soybean-whey proteins

GLU:

Glucose

CD:

Crypt depth

MT:

Muscle thickness

UN:

Urea nitrogen

TC:

Total cholesterol

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransaminase

PCoA:

Principal coordinate analysis

LDA:

Linear discriminant analysis

PCA:

Principal component analysis

HETE:

Hydroxyl eicosatetraenoic acid

LOX:

Lipoxygenase

COX:

Cyclooxygenase

DCA:

Deoxycholic acid

References

  1. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. https://doi.org/10.1016/j.cell.2012.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ramakrishna BS (2013) Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 28(Suppl 4):9–17. https://doi.org/10.1111/jgh.12294

    Article  CAS  PubMed  Google Scholar 

  3. Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12):2019–2040. https://doi.org/10.1007/s10482-020-01474-7

    Article  PubMed  Google Scholar 

  4. Butteiger DN, Hibberd AA, McGraw NJ, Napawan N, Hall-Porter JM, Krul ES (2016) Soy protein compared with milk protein in a western diet increases gut microbial diversity and reduces serum lipids in Golden Syrian hamsters. J Nutr 146(4):697–705. https://doi.org/10.3945/jn.115.224196

    Article  CAS  PubMed  Google Scholar 

  5. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  6. Rackerby B, Kim HJ, Dallas DC, Park SH (2020) Understanding the effects of dietary components on the gut microbiome and human health. Food Sci Biotechnol 29(11):1463–1474. https://doi.org/10.1007/s10068-020-00811-w

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mittendorfer B, Klein S, Fontana L (2020) A word of caution against excessive protein intake. Nat Rev Endocrinol 16(1):59–66. https://doi.org/10.1038/s41574-019-0274-7

    Article  PubMed  Google Scholar 

  8. Apetrii M, Timofte D, Voroneanu L, Covic A (2021) Nutrition in chronic kidney disease-the role of proteins and specific diets. Nutrients 13(3):956. https://doi.org/10.3390/nu13030956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pereira PM, Vicente AF (2013) Meat nutritional composition and nutritive role in the human diet. Meat Sci 93(3):586–592. https://doi.org/10.1016/j.meatsci.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  10. Pham NM, Mizoue T, Tanaka K, Tsuji I, Tamakoshi A, Matsuo K, Wakai K, Nagata C, Inoue M, Tsugane S, Sasazuki S (2014) Meat consumption and colorectal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 44(7):641–650. https://doi.org/10.1093/jjco/hyu061

    Article  PubMed  Google Scholar 

  11. Samraj AN, Pearce OM, Läubli H, Crittenden AN, Bergfeld AK, Banda K, Gregg CJ, Bingman AE, Secrest P, Diaz SL, Varki NM, Varki A (2015) A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci USA 112(2):542–547. https://doi.org/10.1073/pnas.1417508112

    Article  CAS  PubMed  Google Scholar 

  12. Ollberding NJ, Wilkens LR, Henderson BE, Kolonel LN, Le Marchand L (2012) Meat consumption, heterocyclic amines and colorectal cancer risk: the multiethnic cohort study. Int J Cancer 131(7):E1125–E1133. https://doi.org/10.1002/ijc.27546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pasiakos SM, McLellan TM, Lieberman HR (2015) The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med 45(1):111–131. https://doi.org/10.1007/s40279-014-0242-2

    Article  PubMed  Google Scholar 

  14. Paschoalette T, Vasconcelos QDJS, Aragao G (2018) Whey protein: composition, uses, and benefits—a narrative review. Eur J Sport Sci 4(1):1–11

    Google Scholar 

  15. Moreno-Pérez D, Bressa C, Bailén M, Hamed-Bousdar S, Naclerio F, Carmona M, Pérez M, González-Soltero R, Montalvo-Lominchar MG, Carabaña C, Larrosa M (2018) Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients 10(3):337. https://doi.org/10.3390/nu10030337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gürgen SG, Yücel AT, Karakuş A, Çeçen D, Özen G, Koçtürk S (2015) Usage of whey protein may cause liver damage via inflammatory and apoptotic responses. Hum Exp Toxicol 34(7):769–779. https://doi.org/10.1177/0960327114556787

    Article  CAS  PubMed  Google Scholar 

  17. Day L (2013) Proteins from land plants—potential resources for human nutrition and food security. Trends Food Sci Technol 32(1):25–42

    Article  CAS  Google Scholar 

  18. Aiking H (2011) Future protein supply. Trends Food Sci Technol 22(2–3):112–120

    Article  CAS  Google Scholar 

  19. Watanabe K, Igarashi M, Li X, Nakatani A, Miyamoto J, Inaba Y, Sutou A, Saito T, Sato T, Tachibana N, Inoue H, Kimura I (2018) Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS ONE 13(8):e0202083. https://doi.org/10.1371/journal.pone.0202083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu C, Yang J, Wu Q, Chen J, Yang X, Wang L, Jiang Z (2022) Low protein diet improves meat quality and modulates the composition of gut microbiota in finishing pigs. Front Vet Sci 9:843957. https://doi.org/10.3389/fvets.2022.843957

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ren G, Zhang J, Li M, Yi S, Xie J, Zhang H, Wang J (2017) Protein blend ingestion before allogeneic stem cell transplantation improves protein-energy malnutrition in patients with leukemia. Nutr Res 46:68–77. https://doi.org/10.1016/j.nutres.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Ren G, Zhang J, Li M, Tang Z, Yang Z, Cheng G, Wang J (2021) Gut microbiota composition influences outcomes of skeletal muscle nutritional intervention via blended protein supplementation in posttransplant patients with hematological malignancies. Clin Nutr 40(1):94–102. https://doi.org/10.1016/j.clnu.2020.04.030

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Zhou J, Wang G, Cai S, Zeng X, Qiao S (2018) Advances in low-protein diets for swine. J Anim Sci Biotechnol 9:60. https://doi.org/10.1186/s40104-018-0276-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi Q, Zhu Y, Wang J, Yang H, Wang J, Zhu W (2019) Protein restriction and succedent realimentation affecting ileal morphology, ileal microbial composition and metabolites in weaned piglets. Animal 13(11):2463–2472. https://doi.org/10.1017/s1751731119000776

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, Cao G, Zhang H, Li Q, Yang C (2019) Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food Funct 10(12):7844–7854. https://doi.org/10.1039/c9fo01650c

    Article  CAS  PubMed  Google Scholar 

  26. Chen R, Wang J, Zhan R, Zhang L, Wang X (2019) Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. J Ethnopharmacol 244:112139. https://doi.org/10.1016/j.jep.2019.112139

    Article  CAS  PubMed  Google Scholar 

  27. Wirtz A, Carter CG, Codabaccus MB, Fitzgibbon QP, Townsend AT, Smith GG (2022) Protein sources influence both apparent digestibility and gastrointestinal evacuation rate in juvenile slipper lobster (Thenus australiensis). Comp Biochem Physiol A Mol Integr Physiol 265:111121. https://doi.org/10.1016/j.cbpa.2021.111121

    Article  CAS  PubMed  Google Scholar 

  28. Nakatani A, Li X, Miyamoto J, Igarashi M, Watanabe H, Sutou A, Watanabe K, Motoyama T, Tachibana N, Kohno M, Inoue H, Kimura I (2018) Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochem Biophys Res Commun 501(4):955–961. https://doi.org/10.1016/j.bbrc.2018.05.090

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Jiang Z, Zheng C, Wang L, Zhu C, Yang X, Wen X, Ma X (2015) Effects of protein sources and levels in antibiotic-free diets on diarrhea, intestinal morphology, and expression of tight junctions in weaned piglets. Animal Nutrition 1(03):170–176

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gilbert JA, Bendsen NT, Tremblay A, Astrup A (2011) Effect of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis 21(Suppl 2):B16–B31. https://doi.org/10.1016/j.numecd.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Ji HF, Zhang DY, Wang SX, Wang J, Shan DC, Wang YM (2015) Effects of Lactobacillus brevis preparation on growth performance, fecal microflora and serum profile in weaned pigs. Livest Sci 178:251–254

    Article  Google Scholar 

  32. Kohn RA, Dinneen MM, Russek-Cohen E (2005) Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J Anim Sci 83(4):879–889. https://doi.org/10.2527/2005.834879x

    Article  CAS  PubMed  Google Scholar 

  33. Lv J, Xiao Q, Chen Y, Fan X, Liu X, Liu F, Luo G, Zhang B, Wang S (2017) Effects of magnesium isoglycyrrhizinate on AST, ALT, and serum levels of Th1 cytokines in patients with allo-HSCT. Int Immunopharmacol 46:56–61. https://doi.org/10.1016/j.intimp.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  34. Wu F, Tian J, Yu L, Wen H, Jiang M, Lu X (2021) Effects of dietary rapeseed meal levels on growth performance, biochemical indices and flesh quality of juvenile genetically improved farmed tilapia. Aquac Rep 20:100679. https://doi.org/10.1016/j.aqrep.2021.100679

    Article  Google Scholar 

  35. Chamorro S, Romero C, Brenes A, Sánchez-Patán F, Bartolomé B, Viveros A, Arija I (2019) Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food Funct 10(3):1444–1454. https://doi.org/10.1039/c8fo02465k

    Article  CAS  PubMed  Google Scholar 

  36. Casas GA, Blavi L, Cross TL, Lee AH, Swanson KS, Stein HH (2020) Inclusion of the direct-fed microbial Clostridium butyricum in diets for weanling pigs increases growth performance and tends to increase villus height and crypt depth, but does not change intestinal microbial abundance. J Anim Sci 98(1):skz372. https://doi.org/10.1093/jas/skz372

    Article  PubMed  Google Scholar 

  37. Usuda H, Okamoto T, Wada K (2021) Leaky Gut: effect of dietary fiber and fats on microbiome and intestinal barrier. Int J Mol Sci 22(14):7613. https://doi.org/10.3390/ijms22147613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  39. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, Zhu W, Xu X, Li C, Zhou G (2015) Erratum: meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 5:16546. https://doi.org/10.1038/srep16546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146(6):1449–1458. https://doi.org/10.1053/j.gastro.2014.01.052

    Article  PubMed  Google Scholar 

  42. Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:2163. https://doi.org/10.1038/ncomms3163

    Article  CAS  PubMed  Google Scholar 

  43. Arora T, Anastasovska J, Gibson G, Tuohy K, Sharma RK, Bell J, Frost G (2012) Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. Br J Nutr 108(8):1382–1389. https://doi.org/10.1017/s0007114511006957

    Article  CAS  PubMed  Google Scholar 

  44. Ridlon JM, Alves JM, Hylemon PB, Bajaj JS (2013) Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 4(5):382–387. https://doi.org/10.4161/gmic.25723

    Article  PubMed  PubMed Central  Google Scholar 

  45. Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC, Fischbach MA (2020) A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582(7813):566–570. https://doi.org/10.1038/s41586-020-2396-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jonathan C (2002) The immunopathogenesis of sepsis. Nature 420(6917):885–891

    Article  Google Scholar 

  47. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772. https://doi.org/10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  48. He Z, Tao D, Xiong J, Lou F, Zhang J, Chen J, Dai W, Sun J, Wang Y (2020) Phosphorylation of 5-LOX: the potential set-point of inflammation. Neurochem Res 45(10):2245–2257. https://doi.org/10.1007/s11064-020-03090-3

    Article  CAS  PubMed  Google Scholar 

  49. Bitsanis D, Ghebremeskel K, Moodley T, Crawford MA, Djahanbakhch O (2006) Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids. Lipids 41(4):341–346

    Article  CAS  PubMed  Google Scholar 

  50. Qiu J, Shi Z, Jiang J (2017) Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today 22(1):148–156. https://doi.org/10.1016/j.drudis.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  51. Thomas JP, Modos D, Rushbrook SM, Powell N, Korcsmaros T (2022) The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front Immunol 13:829525. https://doi.org/10.3389/fimmu.2022.829525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stenman LK, Holma R, Eggert A, Korpela R (2013) A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 304(3):G227–G234. https://doi.org/10.1152/ajpgi.00267.2012

    Article  CAS  PubMed  Google Scholar 

  53. Liu L, Dong W, Wang S, Zhang Y, Liu T, Xie R, Wang B, Cao H (2018) Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis. Food Funct 9(11):5588–5597. https://doi.org/10.1039/c8fo01143e

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Plan of the Ministry of Science and Technology (2018YFE0206300), Heilongjiang Province Post-doctoral Funded Project (LBH-Z20205), Heilongjiang Bayi Agricultural University Talent Support Program Project (ZRCPY202004), Heilongjiang Bayi Agricultural University Introduced Talent Research Project (XYB201917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjie Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Consent for publication

All authors approved the version to be published.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 407 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, K., Shu, X., Meng, W. et al. Blended-protein changes body weight gain and intestinal tissue morphology in rats by regulating arachidonic acid metabolism and secondary bile acid biosynthesis induced by gut microbiota. Eur J Nutr (2024). https://doi.org/10.1007/s00394-024-03359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00394-024-03359-1

Keywords

Navigation