Skip to main content
Log in

Comparison of the impact of saturated fat from full-fat yogurt or low-fat yogurt and butter on cardiometabolic factors: a randomized cross-over trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Dairy foods are often a major contributor to dietary saturated fatty acids (SFA) intake. However, different SFA-rich foods may not have the same effects on cardiovascular risk factors. We compared full-fat yogurt with low-fat yogurt and butter for their effects on cardiometabolic risk factors in healthy individuals.

Methods

Randomized, two-period crossover trial conducted from October 2022 to April 2023 among 30 healthy men and women (15 to receive full-fat yogurt first, and 15 to receive low-fat yogurt and butter first). Participants consumed a diet with 1.5-2 servings of full-fat (4%) yogurt or low-fat (< 1.5) yogurt and 10–15 g of butter per day for 4 weeks, with 4 weeks wash-out when they consumed 1.5-2 servings of low-fat milk. At baseline, and the end of each 4 weeks, fasting blood samples were drawn and plasma lipids, glycemic and inflammatory markers as well as expression of some genes in the blood buffy coats fraction were determined.

Results

All 30 participants completed the two periods of the study. Apolipoprotein B was higher for the low-fat yogurt and butter [changes from baseline, + 10.06 (95%CI 4.64 to 15.47)] compared with the full-fat yogurt [–4.27 (95%CI, -11.78 to 3.23)] and the difference between two treatment periods was statistically significant (p = 0.004). Non-high-density lipoprotein increased for the low-fat yogurt and butter [change, + 5.06 (95%CI (-1.56 to 11.69) compared with the full-fat yogurt [change, − 4.90 (95%CI, -11.61 to 1.81), with no significant difference between two periods (p = 0.056). There were no between-period differences in other plasma lipid, insulin, and inflammatory biomarkers or leukocyte gene expression of ATP-binding cassette transporter 1 and CD36.

Conclusion

This study suggests that short-term intake of SFAs from full-fat yogurt compared to intake from butter and low-fat yogurt has fewer adverse effects on plasma lipid profile.

ClinicalTrials.gov

NCT05589350, 10/15/2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carr SS, Hooper AJ, Sullivan DR, Burnett JR (2019) Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology 51(2):148–154 https://doi.org/10.1016/j.pathol.2018.11.006. PubMed PMID: 30595507

    Article  CAS  PubMed  Google Scholar 

  2. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM et al (2017) Dietary Fats and Cardiovascular Disease: a Presidential Advisory from the American Heart Association. Circulation 136(3):e1–e23. 10.1161/CIR.0000000000000510. PubMed PMID: 28620111

    Article  PubMed  Google Scholar 

  3. Lopez S, Bermudez B, Ortega A, Varela LM, Pacheco YM, Villar J et al (2011) Effects of meals rich in either monounsaturated or saturated fat on lipid concentrations and on insulin secretion and action in subjects with high fasting triglyceride concentrations. Am J Clin Nutr 93(3):494–499. https://doi.org/10.3945/ajcn.110.003251. PubMed PMID: 21209225

    Article  CAS  PubMed  Google Scholar 

  4. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS (2020) Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 8(8):Cd011737. Epub 20200821. https://doi.org/10.1002/14651858.CD011737.pub3. PubMed PMID: 32827219; PubMed Central PMCID: PMCPMC8092457

  5. de Oliveira Otto MC, Mozaffarian D, Kromhout D, Bertoni AG, Sibley CT, Jacobs DR Jr., Nettleton JA (2012) Dietary intake of saturated fat by food source and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Am J Clin Nutr 96(2):397–404 Epub 20120703. https://doi.org/10.3945/ajcn.112.037770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Givens DI (2022) Saturated fats, dairy foods and cardiovascular health: no longer a curious paradox? Nutr Bull 47(4):407–422

    Article  PubMed  PubMed Central  Google Scholar 

  7. O’Sullivan TA, Hafekost K, Mitrou F, Lawrence D (2013) Food sources of saturated fat and the association with mortality: a meta-analysis. Am J Public Health 103(9):e31–42 Epub 20130718. https://doi.org/10.2105/ajph.2013.301492

    Article  PubMed  PubMed Central  Google Scholar 

  8. Department of Agriculture US, Department of Health and Human Services US (2020) Dietary guidelines for americans, 2020–2025, 9th edn. US Government Publishing Office, Washington, DC

    Google Scholar 

  9. Pimpin L, Wu JH, Haskelberg H, Del Gobbo L, Mozaffarian D (2016) Is butter back? A systematic review and Meta-analysis of butter consumption and risk of Cardiovascular Disease, Diabetes, and total mortality. PLoS ONE 11(6):e0158118 Epub 20160629. https://doi.org/10.1371/journal.pone.0158118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Engel S, Tholstrup T (2015) Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet. Am J Clin Nutr 102(2):309–315

    Article  CAS  PubMed  Google Scholar 

  11. Trichia E, Luben R, Khaw KT, Wareham NJ, Imamura F, Forouhi NG (2020) The associations of longitudinal changes in consumption of total and types of dairy products and markers of metabolic risk and adiposity: findings from the European Investigation into Cancer and Nutrition (EPIC)-Norfolk study, United Kingdom. Am J Clin Nutr 111(5):1018–1026. https://doi.org/10.1093/ajcn/nqz335. PubMed PMID: 31915813; PubMed Central PMCID: PMCPMC7198306

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nestel PJ, Mori TA (2022) Dairy foods: is its Cardiovascular Risk Profile changing? Curr Atheroscler Rep 24(1):33–40 Epub 20220119. https://doi.org/10.1007/s11883-022-00984-1

    Article  PubMed  Google Scholar 

  13. Hjerpsted J, Leedo E, Tholstrup T (2011) Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am J Clin Nutr 94(6):1479–1484. https://doi.org/10.3945/ajcn.111.022426. PubMed PMID: 22030228

    Article  CAS  PubMed  Google Scholar 

  14. Brassard D, Tessier-Grenier M, Allaire J, Rajendiran E, She Y, Ramprasath V et al (2017) Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: a randomized controlled trial. Am J Clin Nutr 105(4):800–809. https://doi.org/10.3945/ajcn.116.150300. PubMed PMID: 28251937

    Article  CAS  PubMed  Google Scholar 

  15. Nestel PJ, Chronopulos A, Cehun M (2005) Dairy fat in cheese raises LDL cholesterol less than that in butter in mildly hypercholesterolaemic subjects. Eur J Clin Nutr 59(9):1059–1063. https://doi.org/10.1038/sj.ejcn.1602211. PubMed PMID: 16015270

    Article  CAS  PubMed  Google Scholar 

  16. Astrup A, Bertram HC, Bonjour JP, de Groot LC, de Oliveira Otto MC, Feeney EL et al (2019) WHO draft guidelines on dietary saturated and trans fatty acids: time for a new approach? BMJ 366:l4137 Epub 20190703. https://doi.org/10.1136/bmj.l4137

    Article  PubMed  Google Scholar 

  17. Dehghan M, Mente A, Rangarajan S, Sheridan P, Mohan V, Iqbal R et al (2018) Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet 392(10161):2288–2297 Epub 20180911. https://doi.org/10.1016/s0140-6736(18)31812-9

    Article  PubMed  Google Scholar 

  18. Kvist K, Laursen ASD, Overvad K, Jakobsen MU (2020) Substitution of milk with whole-Fat Yogurt products or cheese is Associated with a lower risk of myocardial infarction: the Danish Diet, Cancer and Health cohort. J Nutr 150(5):1252–1258. https://doi.org/10.1093/jn/nxz337. PubMed PMID: 31919508

    Article  PubMed  Google Scholar 

  19. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE et al (2003) International physical activity questionnaire: 12-country reliability and validity. Medicine and science in sports and exercise. 35(8):1381-95. doi: 10.1249/01.MSS.0000078924.61453.FB. PubMed PMID: 12900694

  20. Sniderman AD, Thanassoulis G, Glavinovic T, Navar AM, Pencina M, Catapano A, Ference BA (2019) Apolipoprotein B particles and Cardiovascular Disease: a narrative review. JAMA Cardiol 4(12):1287–1295. https://doi.org/10.1001/jamacardio.2019.3780. PubMed PMID: 31642874; PubMed Central PMCID: PMC7369156

    Article  PubMed  PubMed Central  Google Scholar 

  21. Robinson JG, Wang S, Jacobson TA (2012) Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and nonhigh-density lipoprotein cholesterol for cardiovascular risk reduction in randomized trials. Am J Cardiol 110(10):1468–1476. https://doi.org/10.1016/j.amjcard.2012.07.007. PubMed PMID: 22906895

    Article  CAS  PubMed  Google Scholar 

  22. O’Connor A, Feeney EL, Bhargava N, Noronha N, Gibney ER (2022) Determination of factors associated with serum cholesterol response to dairy fat consumption in overweight adults: secondary analysis from an RCT. Front Nutr 9:945723 Epub 20220803. https://doi.org/10.3389/fnut.2022.945723

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thorning TK, Bertram HC, Bonjour JP, de Groot L, Dupont D, Feeney E et al (2017) Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr 105(5):1033–1045 Epub 20170412. https://doi.org/10.3945/ajcn.116.151548

    Article  CAS  PubMed  Google Scholar 

  24. Beals E, Kamita SG, Sacchi R, Demmer E, Rivera N, Rogers-Soeder TS et al (2019) Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects. J Nutr Sci 8:e16. PubMed PMID: 31080589; PubMed Central PMCID: PMCPMC6498758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mulet-Cabero A-I, Brodkorb A (2021) Dairy products. In: Grundy MML, Wilde PJ (eds) Bioaccessibility and digestibility of lipids from Food. Springer International Publishing, Cham, pp 133–149

    Chapter  Google Scholar 

  26. Ahn Y-J, Ganesan P, Kwak H-S (2011) Composition, structure, and bioactive components in milk fat globule membrane. Food Sci Anim Resour 31(1):1–8

    Article  Google Scholar 

  27. Nilsson A, Duan RD (2006) Absorption and lipoprotein transport of sphingomyelin. J Lipid Res 47(1):154–171 Epub 20051026. https://doi.org/10.1194/jlr.M500357-JLR200

    Article  CAS  PubMed  Google Scholar 

  28. Eckhardt ER, Wang DQ, Donovan JM, Carey MC (2002) Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology 122(4):948–956. https://doi.org/10.1053/gast.2002.32539. PubMed PMID: 11910347

    Article  CAS  PubMed  Google Scholar 

  29. Feeney EL, Barron R, Dible V, Hamilton Z, Power Y, Tanner L et al (2018) Dairy matrix effects: response to consumption of dairy fat differs when eaten within the cheese matrix-a randomized controlled trial. Am J Clin Nutr 108(4):667–674. https://doi.org/10.1093/ajcn/nqy146. PubMed PMID: 30107488

    Article  PubMed  Google Scholar 

  30. Soerensen KV, Thorning TK, Astrup A, Kristensen M, Lorenzen JK (2014) Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men. Am J Clin Nutr 99(5):984–991 Epub 20140312. https://doi.org/10.3945/ajcn.113.077735

    Article  CAS  PubMed  Google Scholar 

  31. Lamothe S, Rémillard N, Tremblay J, Britten M (2017) Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. Food Res Int. 92:138 – 46. Epub 20161228. https://doi.org/10.1016/j.foodres.2016.12.026. PubMed PMID: 28290291

  32. Feeney EL, Daly A, Dunne S, Dible V, Barron R, Seratlic S et al (2023) Effect of reduced-calcium and high-calcium cheddar cheese consumption on the excretion of faecal fat: a 2-week cross-over dietary intervention study. Eur J Nutr 62(4):1755–1765 Epub 20230223. https://doi.org/10.1007/s00394-023-03118-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raziani F, Tholstrup T, Kristensen MD, Svanegaard ML, Ritz C, Astrup A, Raben A (2016) High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome: a randomized controlled trial. Am J Clin Nutr 104(4):973–981. https://doi.org/10.3945/ajcn.116.134932. PubMed PMID: 27557654

    Article  CAS  PubMed  Google Scholar 

  34. Rancourt-Bouchard M, Gigleux I, Guay V, Charest A, Saint-Gelais D, Vuillemard JC et al (2020) Effects of regular-fat and low-fat dairy consumption on daytime ambulatory blood pressure and other cardiometabolic risk factors: a randomized controlled feeding trial. Am J Clin Nutr 111(1):42–51. https://doi.org/10.1093/ajcn/nqz251. PubMed PMID: 31584063

    Article  PubMed  Google Scholar 

  35. Schmidt KA, Cromer G, Burhans MS, Kuzma JN, Hagman DK, Fernando I et al (2021) The impact of diets rich in low-fat or full-fat dairy on glucose tolerance and its determinants: a randomized controlled trial. Am J Clin Nutr 113(3):534–547. https://doi.org/10.1093/ajcn/nqaa301. PubMed PMID: 33184632; PubMed Central PMCID: PMCPMC7948850

    Article  CAS  PubMed  Google Scholar 

  36. Companys J, Pla-Pagà L, Calderón-Pérez L, Llauradó E, Solà R, Pedret A, Valls RM (2020) Fermented dairy products, probiotic supplementation, and Cardiometabolic diseases: a systematic review and Meta-analysis. Adv Nutr 11(4):834–863. https://doi.org/10.1093/advances/nmaa030. PubMed PMID: 32277831; PubMed Central PMCID: PMCPMC7360468

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fernandez MA, Panahi S, Daniel N, Tremblay A, Marette A (2017) Yogurt and Cardiometabolic diseases: a critical review of potential mechanisms. Adv Nutr 8(6):812–829 Epub 20171115. https://doi.org/10.3945/an.116.013946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benatar JR, Jones E, White H, Stewart RA (2014) A randomized trial evaluating the effects of change in dairy food consumption on cardio-metabolic risk factors. Eur J Prev Cardiol 21(11):1376–1386 Epub 20130617. doi: 10.1177/2047487313493567. PubMed PMID: 23774272

    Article  PubMed  Google Scholar 

  39. Chen Y, Feng R, Yang X, Dai J, Huang M, Ji X et al (2019) Yogurt improves insulin resistance and liver fat in obese women with nonalcoholic fatty liver disease and metabolic syndrome: a randomized controlled trial. Am J Clin Nutr 109(6):1611–1619. https://doi.org/10.1093/ajcn/nqy358. PubMed PMID: 31136662

    Article  PubMed  Google Scholar 

  40. Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL (2007) CD36 and macrophages in atherosclerosis. Cardiovasc Res 75(3):468–477 Epub 20070314. https://doi.org/10.1016/j.cardiores.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  41. Chávez-Sánchez L, Garza-Reyes MG, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV, Blanco-Favela F (2014) The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans. Hum Immunol 75(4):322–329 Epub 20140130. https://doi.org/10.1016/j.humimm.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  42. Heinecke F, Mazzucco MB, Fornes D, Roberti S, Jawerbaum A, White V (2020) The offspring from rats fed a fatty diet display impairments in the activation of liver peroxisome proliferator activated receptor alpha and features of fatty liver disease. Mol Cell Endocrinol 511:110818 Epub 20200413. https://doi.org/10.1016/j.mce.2020.110818

    Article  CAS  PubMed  Google Scholar 

  43. Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LC, Geleijnse JM et al (2009) Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr 90(2):415–424 Epub 20090610. https://doi.org/10.3945/ajcn.2009.27680

    Article  CAS  PubMed  Google Scholar 

  44. Chen L, Zhao Z-W, Zeng P-H, Zhou Y-J, Yin W-J (2022) Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 21(11):1121–1139. https://doi.org/10.1080/15384101.2022.2042777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research would not have been possible without the contribution of Elaheh Tajeddin as a study research assistant. We thank Dr. Omid Rahnama and also Rahnama laboratory staff for providing the necessary laboratory facilities. Finally, the authors would like to thank the individuals who volunteered to participate in this trial.

Funding

This research is funded by the Shahid Beheshti University of Medical Science, Tehran, Iran (research project code: 32333).

Author information

Authors and Affiliations

Authors

Contributions

JN designed the study; YR performed the selection of study volunteers and data collection; JN analyzed and interpreted data and wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Javad Nasrollahzadeh.

Ethics declarations

Ethics statement and consent for participants

This study was conducted by the Helsinki Declaration. All procedures were approved by the Ethics Committees of the National Nutrition and Food Technology Research Institute, and informed consent was taken from the participants. This study was registered at ClinicalTrials.gov (NCT05589350).

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, Y.R., Nasrollahzadeh, J. Comparison of the impact of saturated fat from full-fat yogurt or low-fat yogurt and butter on cardiometabolic factors: a randomized cross-over trial. Eur J Nutr (2024). https://doi.org/10.1007/s00394-024-03352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00394-024-03352-8

Keywords

Navigation