Skip to main content
Log in

Association between green tea intake and digestive system cancer risk in European and East Asian populations: a Mendelian randomization study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Previous observational studies have shown that green tea consumption is associated with a reduced incidence of digestive system cancers (DSCs). However, the observed association could be due to confounding factors. Therefore, we used a two-sample Mendelian randomization (MR) approach to assess the causal effect of green tea intake on the risk of five common DSCs.

Methods

Independent genetic variants strongly associated with green tea consumption in European and East Asian populations were selected as instrumental variables in genome-wide association studies involving up to 64,949 European individuals and 152,653 East Asian individuals, respectively. The associations between genetic variants and DSCs were extracted from the FinnGen study and the Japan Biobank. The primary analysis was performed using random-effects inverse variance weighting (IVW). Other MR analyses, including weighted mode-based estimate, weighted-median, MR-Egger regression, Mendelian Randomization-Pleiotropy Residual Sum and Outlier (MR-PRESSO) analysis, were used for sensitivity analyses. In addition, a multivariate MR design was performed to adjust for smoking and alcohol consumption.

Results

The IVW results showed no causal relationship between tea intake and DSCs risk in European population (esophagus cancer: odds ratio (OR) = 1.044, 95% confidence interval (CI) 0.992–1.099, p = 0.096; stomach cancer: OR = 0.988, 95% CI 0.963–1.014, p = 0.368; colorectal cancer: OR = 1.003, 95% CI 0.992–1.015, p = 0.588; liver cancer: OR = 0.996, 95% CI 0.960–1.032, p = 0.808; pancreatic cancer: OR = 0.990, 95% CI 0.965–1.015, p = 0.432). The MR-Egger regression, MR-PRESSO analysis and other methods also confirmed the reliability of the conclusion. Similarly, no significant association was found between green tea consumption and the incidence of DSCs among East Asians. This relationship is not significant even after adjusting for smoking and alcohol consumption (P > 0.05).

Conclusion

Our study provides evidence that genetically predicted green tea intake is not causally associated with the development of DSCs in the European and East Asian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in FinnGen (https://www.finngen.fi/en), UK Biobank (http://www.nealelab.is/uk-biobank) and BioBank Japan studies (http://jenger.riken.jp/en/).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-A Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  2. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, Bray F (2020) Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1):335

    Article  PubMed  Google Scholar 

  3. Eisenstein M (2019) Tea’s value as a cancer therapy is steeped in uncertainty. Nature 566(7742):S6–S7

    Article  CAS  PubMed  Google Scholar 

  4. Yang CS, Zhang J (2019) Studies on the prevention of cancer and cardiometabolic diseases by tea: issues on mechanisms, effective doses, and toxicities. J Agric Food Chem 67(19):5446–5456

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Zhou R, Wang B, Chen K, Shi L-Y, Zhu T-D, Mi M-T (2013) Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. Am J Clin Nutr 98(2):340–348

    Article  CAS  PubMed  Google Scholar 

  6. Yu J, Song P, Perry R, Penfold C, Cooper AR (2017) The effectiveness of green tea or green tea extract on insulin resistance and glycemic control in type 2 diabetes mellitus: a meta-analysis. Diabetes Metab J 41(4):251–262

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iwasaki M, Mizusawa J, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Tsugane S (2014) Green tea consumption and breast cancer risk in Japanese women: a case–control study. Nutr Cancer 66(1):57–67

    Article  CAS  PubMed  Google Scholar 

  8. Sheerah H, Keyang L, Eshak ES, Cui R, Shirai K, Muraki I, Iso H, Tamakoshi A (2020) Association of tea consumption and the risk of gastric cancer in Japanese adults: the Japan Collaborative Cohort Study. BMJ Open 10(10):e038243

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin Y, Kikuchi S, Tamakoshi A, Yagyu K, Obata Y, Kurosawa M, Inaba Y, Kawamura T, Motohashi Y, Ishibashi T (2008) Green tea consumption and the risk of pancreatic cancer in Japanese adults. Pancreas 37(1):25–30

    Article  CAS  PubMed  Google Scholar 

  10. Yi Y, Liang H, Jing H, Jian Z, Guang Y, Jun Z, Zhu H, Jian L (2020) Green tea consumption and esophageal cancer risk: a meta-analysis. Nutr Cancer Int J 72(3):513–521

    Article  Google Scholar 

  11. Sang LX, Chang B, Li XH, Jiang M (2013) Green tea consumption and risk of esophageal cancer: a meta-analysis of published epidemiological studies. Nutr Cancer 65(6):802–812. https://doi.org/10.1080/01635581.2013.805423

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Mei K, Yang L, Liu X, Xie L (2021) Green tea consumption and risk for esophageal cancer: a systematic review and dose-response meta-analysis. Nutrition. https://doi.org/10.1016/j.nut.2021.111197

    Article  PubMed  Google Scholar 

  13. Huang Y, Chen H, Zhou L, Li G, Yi D, Zhang Y, Wu Y, Liu X, Wu X, Song Q, Liu L, Yi D (2017) Association between green tea intake and risk of gastric cancer: a systematic review and dose-response meta-analysis of observational studies. Public Health Nutr 20(17):3183–3192

    Article  PubMed  PubMed Central  Google Scholar 

  14. Myung SK, Bae WK, Oh SM, Kim Y, Ju W, Sung J, Lee YJ, Ko JA, Song JI, Choi HJ (2009) Green tea consumption and risk of stomach cancer: a meta-analysis of epidemiologic studies. Int J Cancer 124(3):670–677

    Article  CAS  PubMed  Google Scholar 

  15. Yang G, Zheng W, Xiang YB, Gao J, Li HL, Zhang X, Gao YT, Shu XO (2011) Green tea consumption and colorectal cancer risk: a report from the Shanghai Men’s Health Study. Carcinogenesis 32(11):1684–1688. https://doi.org/10.1093/carcin/bgr186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang WS, Zeng XF, Liu ZN, Zhao QH, Tan YT, Gao J, Li HL, Xiang YB (2020) Diet and liver cancer risk: a narrative review of epidemiological evidence. Br J Nutr 124(3):330–340

    Article  CAS  PubMed  Google Scholar 

  17. Huang YQ, Lu X, Min H, Wu QQ, Shi XT, Bian KQ, Zou XP (2016) Green tea and liver cancer risk: a meta-analysis of prospective cohort studies in Asian populations. Nutrition 32(1):3–8

    Article  CAS  PubMed  Google Scholar 

  18. Zeng JL, Li ZH, Wang ZC, Zhang HL (2014) Green tea consumption and risk of pancreatic cancer: a meta-analysis. Nutrients 6(11):4640–4650

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thompson SG, Burgess S (2015) Mendelian randomization :methods for using genetic variants in causal estimation. Chapman and Hall/CRC, New York

    Google Scholar 

  20. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, Langenberg C, Golub RM, Loder EW, Gallo V, Tybjaerg-Hansen A, Davey SG, Egger M, Richards JB (2021) Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA 326(16):1614–1621

    Article  PubMed  Google Scholar 

  21. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA (2022) FinnGen: unique genetic insights from combining isolated population and national health register data. medRxiv. https://doi.org/10.1101/2022.03.03.22271360

    Article  Google Scholar 

  23. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, Tian C, Zhan X, Research T, Psychiatry HAI, Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gabrielsen ME, Gordon SD, Haessler J, Hottenga JJ, Huang H, Jang SK, Jansen PR, Ling Y, Magi R, Matoba N, McMahon G, Mulas A, Orru V, Palviainen T, Pandit A, Reginsson GW, Skogholt AH, Smith JA, Taylor AE, Turman C, Willemsen G, Young H, Young KA, Zajac GJM, Zhao W, Zhou W, Bjornsdottir G, Boardman JD, Boehnke M, Boomsma DI, Chen C, Cucca F, Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, Gillespie NA, Gudbjartsson DF, Haller T, Harris KM, Heath AC, Hewitt JK, Hickie IB, Hokanson JE, Hopfer CJ, Hunter DJ, Iacono WG, Johnson EO, Kamatani Y, Kardia SLR, Keller MC, Kellis M, Kooperberg C, Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, Martin NG, McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada Y, Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ, Runarsdottir V, Stallings MC, Stancakova A, Stefansson H, Thai KK, Tindle HA, Tyrfingsson T, Wall TL, Weir DR, Weisner C, Whitfield JB, Winsvold BS, Yin J, Zuccolo L, Bierut LJ, Hveem K, Lee JJ, Munafo MR, Saccone NL, Willer CJ, Cornelis MC, David SP, Hinds DA, Jorgenson E, Kaprio J, Stitzel JA, Stefansson K, Thorgeirsson TE, Abecasis G, Liu DJ, Vrieze S (2019). Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51(2): 237–244

  24. Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, Ikegawa S, Ikeda M, Iwata N, Hirata M, Matsuda K, Murakami Y, Kubo M, Kamatani Y, Okada Y (2020) GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat Hum Behav 4(3):308–316. https://doi.org/10.1038/s41562-019-0805-1

    Article  PubMed  Google Scholar 

  25. Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, Sakaue S, Matoba N, Low SK, Okada Y, Terao C, Amariuta T, Gazal S, Kochi Y, Horikoshi M, Suzuki K, Ito K, Koyama S, Ozaki K, Niida S, Sakata Y, Sakata Y, Kohno T, Shiraishi K, Momozawa Y, Hirata M, Matsuda K, Ikeda M, Iwata N, Ikegawa S, Kou I, Tanaka T, Nakagawa H, Suzuki A, Hirota T, Tamari M, Chayama K, Miki D, Mori M, Nagayama S, Daigo Y, Miki Y, Katagiri T, Ogawa O, Obara W, Ito H, Yoshida T, Imoto I, Takahashi T, Tanikawa C, Suzuki T, Sinozaki N, Minami S, Yamaguchi H, Asai S, Takahashi Y, Yamaji K, Takahashi K, Fujioka T, Takata R, Yanai H, Masumoto A, Koretsune Y, Kutsumi H, Higashiyama M, Murayama S, Minegishi N, Suzuki K, Tanno K, Shimizu A, Yamaji T, Iwasaki M, Sawada N, Uemura H, Tanaka K, Naito M, Sasaki M, Wakai K, Tsugane S, Yamamoto M, Yamamoto K, Murakami Y, Nakamura Y, Raychaudhuri S, Inazawa J, Yamauchi T, Kadowaki T, Kubo M, Kamatani Y (2020) Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet 52(7):669–679. https://doi.org/10.1038/s41588-020-0640-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, Ikegawa S, Ikeda M, Iwata N, Hirata M, Matsuda K, Kubo M, Okada Y, Kamatani Y (2019) GWAS of smoking behaviour in 165,436 Japanese people reveals seven new loci and shared genetic architecture. Nat Hum Behav 3(5):471–477. https://doi.org/10.1038/s41562-019-0557-y

    Article  PubMed  Google Scholar 

  27. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, Butterworth AS, Staley JR (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35(22):4851–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA, Krauss RM, Stephens M (2015) A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 10(4):e0120758

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764

    Article  PubMed  Google Scholar 

  30. Bowden J, Davey SG, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bowden J, Davey SG, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sanderson E, Davey Smith G, Windmeijer F, Bowden J (2019) An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 48(3):713–727. https://doi.org/10.1093/ije/dyy262

    Article  PubMed  Google Scholar 

  33. Burgess S, Thompson SG (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 181(4):251–260. https://doi.org/10.1093/aje/kwu283

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li M, Duan Y, Wang Y, Chen L, Abdelrahim MEA, Yan J (2022) The effect of Green green tea consumption on body mass index, lipoprotein, liver enzymes, and liver cancer: An updated systemic review incorporating a meta-analysis. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2113360

    Article  PubMed  Google Scholar 

  35. Tanaka K, Tamakoshi A, Sugawara Y, Mizoue T, Inoue M, Sawada N, Matsuo K, Ito H, Naito M, Nagata C, Kitamura Y, Sadakane A, Tsugane S, Shimazu T, Research Group for the D, Evaluation of Cancer Prevention Strategies in J (2019) Coffee, green tea and liver cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 49(10):972–984. https://doi.org/10.1093/jjco/hyz097

    Article  Google Scholar 

  36. Filippini T, Malavolti M, Borrelli F, Izzo AA, Fairweather-Tait SJ, Horneber M, Vinceti M (2020) Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005004.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Z-H, Gao Q-Y, Fang J-Y (2012) Green tea and incidence of colorectal cancer: evidence from prospective cohort studies. Nutr Cancer 64(8):1143–1152

    Article  CAS  PubMed  Google Scholar 

  38. Wang X-J, Zeng X-T, Duan X-L, Zeng H-C, Shen R, Zhou P (2012) Association between green tea and colorectal cancer risk: a meta-analysis of 13 case-control studies. Asian Pac J Cancer Prev 13(7):3123–3127

    Article  PubMed  Google Scholar 

  39. Chen Y, Wu Y, Du M, Chu H, Zhu L, Tong N, Zhang Z, Wang M, Gu D, Chen J (2017) An inverse association between tea consumption and colorectal cancer risk. Oncotarget 8(23):37367–37376. https://doi.org/10.18632/oncotarget.16959

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ishikawa A, Kuriyama S, Tsubono Y, Fukao A, Takahashi H, Tachiya H, Tsuji I (2006) Smoking, alcohol drinking, green tea consumption and the risk of esophageal cancer in Japanese men. J Epidemiol 16(5):185–192. https://doi.org/10.2188/jea.16.185

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kang H, Rha SY, Oh KW, Nam CM (2010) Green tea consumption and stomach cancer risk: a meta-analysis. Epidemiol Health 32:e2010001

    Article  PubMed  PubMed Central  Google Scholar 

  42. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43(1):89–143. https://doi.org/10.1080/10408690390826464

    Article  CAS  PubMed  Google Scholar 

  43. Trisha AT, Shakil MH, Talukdar S, Rovina K, Huda N, Zzaman W (2022) Tea polyphenols and their preventive measures against cancer: current trends and directions. Foods. https://doi.org/10.3390/foods11213349

  44. Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H (2017) Green tea and its anti-angiogenesis effects. Biomed Pharmacother 89:949–956. https://doi.org/10.1016/j.biopha.2017.01.161

    Article  CAS  PubMed  Google Scholar 

  45. Zhao H, Zhang M, Zhao L, Ge YK, Sheng J, Shi W (2011) Changes of constituents and activity to apoptosis and cell cycle during fermentation of tea. Int J Mol Sci 12(3):1862–1875. https://doi.org/10.3390/ijms12031862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shirakami Y, Shimizu M (2018) Possible mechanisms of green tea and its constituents against cancer. Molecules. https://doi.org/10.3390/molecules23092284

    Article  PubMed  PubMed Central  Google Scholar 

  47. Henning SM, Wang P, Carpenter CL, Heber D (2013) Epigenetic effects of green tea polyphenols in cancer. Epigenomics 5(6):729–741. https://doi.org/10.2217/epi.13.57

    Article  CAS  PubMed  Google Scholar 

  48. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439. https://doi.org/10.1038/nrc2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garabedian LF, Chu P, Toh S, Zaslavsky AM, Soumerai SB (2014) Potential bias of instrumental variable analyses for observational comparative effectiveness research. Ann Intern Med 161(2):131–138. https://doi.org/10.7326/M13-1887

    Article  PubMed  Google Scholar 

  50. Burgess S, Davies NM, Thompson SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 40(7):597–608. https://doi.org/10.1002/gepi.21998

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang T, Gill D, Butterworth AS, Burgess S (2023) An empirical investigation into the impact of winner’s curse on estimates from Mendelian randomization. Int J Epidemiol 52(4):1209–1219. https://doi.org/10.1093/ije/dyac233

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the participants and investigators of the FinnGen, UK Biobank and BioBank Japan study. We also thank Home for Researchers editorial team (www.home-for-researchers.com) for language editing service.

Funding

The study was funded by Key Discipline Project on Chinese Pharmacology of Hunan University of Chinese Medicine [202302] and General Program of Hunan Provincial Administration of Traditional Chinese Medicine [B2023010].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.N., S. L. and F.X.; methodology: H.Z., D. D, F.H. and X.N.; software: D.N, X.H., R. L. and H. Z.; formal analysis: H. Z., X. H. and X. N.; writing—original draft preparation: H. Z. and X. N., D. N; writing—review and editing, D.N., X. H., F.X., and S.L.; all the authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Shunxiang Li or Fei Xu.

Ethics declarations

Conflict of interest

The authors claim that there were no potential conflicts of interest in the study due to business or financial relationships.

Institutional review board statement

Since our data are publicly available and all subjects have obtained informed consent to participate in the corresponding research, this study no longer requires ethical review.

Informed consent statement

All subjects obtained informed consent to participate in the corresponding study, so it was not required for this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1758 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, D., He, X., Zheng, H. et al. Association between green tea intake and digestive system cancer risk in European and East Asian populations: a Mendelian randomization study. Eur J Nutr 63, 1103–1111 (2024). https://doi.org/10.1007/s00394-023-03312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03312-8

Keywords

Navigation