Skip to main content
Log in

Peppermint essential oil (Mentha piperita L.) increases time to exhaustion in runners

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion.

Methods

In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density.

Results

Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05).

Conclusion

Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study.

Brazilian registry of clinical trials (ReBEC)

RBR-75zt25z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The database that supports the results and analyses presented in this article can be requested from the authors by email at any time.

References

  1. Krustrup P, Gonzalez-Alonso J, Quistoff B, Bangsbo J (2001) Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans. J Physiol 536:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332

    Article  PubMed  Google Scholar 

  3. Mc Cartney D, Desbrow B, Irwin C (2017) The effect of fluid intake following dehydration on subsequent athletic and cognitive performance: a systematic review and meta-analysis. Sports Med Open 3:13

    Article  PubMed  Google Scholar 

  4. Armstrong LE (2021) Rehydration during endurance exercise: challenges, research, options, methods. Nutrients 13:887

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kenefick RW, Cheuvront SN (2012) Hydration for recreational sport and physical activity. Nutr Rev 70:137–142

    Article  Google Scholar 

  6. Holland JJ, Skinner TL, Irwin CG, Leveritt MD, Goulet EDB (2017) The influence of drinking fluid on endurance cycling performance: a meta-analysis. Sports Med 47(11):2269–2284

    Article  PubMed  Google Scholar 

  7. Riera F, Trong TT, Sinnapah S, Hue O (2014) Physical and perceptual cooling with beverages toincrease cycle performance in a tropical climate. PLoS ONE 9:8

    Article  Google Scholar 

  8. Stevens CJ, Bennett KJM, Sculley DV, Callister R, Taylor L, Dascombe BJ (2017) A comparison of mixed-method cooling interventions on preloaded running performance in the heat. J Strength Cond Res 31:620–629

    Article  PubMed  Google Scholar 

  9. Barwood MJ, Corbett J, White DK (2014) Spraying with 0.20% L-menthol does not enhance 5 k running performance in the heat in untrained runners. J Sports Med Phys Fit 54(5):595–604

    CAS  Google Scholar 

  10. Barwood MJ, Corbett J, Thomas K, Twentyman P (2015) Relieving thermal discomfore: effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat. Scand J Med Sci Sports 25:211–218

    Article  PubMed  Google Scholar 

  11. Stevens CJ, Thoseby B, Sculley DV, Callister R, Taylor L, Dascombe BJ (2016) Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion. Scand J Med Sci Sports 26(10):1209–1216

    Article  CAS  PubMed  Google Scholar 

  12. Johar P et al (2012) A comparison of topical menthol to ice on pain, evoked tetanic and voluntary force during delayed onset muscle soreness. Int J Sports Phys Ther 7(3):314–322

    PubMed  PubMed Central  Google Scholar 

  13. Smith AP, Boden C (2013) Effects of chewing menthol gum on the alertness of healthy volunteers and those with an upper respiratory tract illness. Stress Health 29(2):138–142

    Article  PubMed  Google Scholar 

  14. Gherman C, Culea M, Cozar O (2000) Comparative analysis of some active principles of herb plants by GC/MS. Talanta 53:253–262

    Article  CAS  PubMed  Google Scholar 

  15. Karuza L, Blasevic N, Soljic Z (1996) Isolation and structure of flavonoids of peppermint (Mentha piperita) leaves. Acta Pharm 46:315–320

    CAS  Google Scholar 

  16. Sokovic MD et al (2009) Chemical composition of essential oils of Thymus and Mentha species and their antifungical activities. Molecules 14:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toscano LT et al (2015) Potential ergogenic activity of grape juice in runners. Appl Physiol Nutr Metab 40(9):899–906

    Article  CAS  PubMed  Google Scholar 

  18. Miranda-Vilela AL, Akimoto AK, Alves PCZ, Pereira LCS, Gonçalves CA, Klautau-Guimarães MN, Grisolia CK (2009) Dietary carotenoid-rich pequi oil reduces plasma lipid peroxidation and DNA damage in runners and evidence for an association with MnSOD genetic variant—Val9Ala. Genet Mol Res 8(4):1481–1495

    Article  CAS  PubMed  Google Scholar 

  19. Howatson G, Mchugh MP, Hill JA, Brouner J, Jewell AP, Van Someren KA (2010) Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports 20(6):843–852

    Article  CAS  PubMed  Google Scholar 

  20. Meamarbashi A, Rajabi A (2013) The effects of peppermint on exercise performance. J Int Soc Sports Nutr 10:15

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meamarbashi A (2014) Instant effects of peppermint essential oil on the physiological parameters and exercise performance. Avicenna J Phytomed 4(1):72–78

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shepherd K, Peart DJ (2017) Aerobic capacity is not improved following 10-day supplementation with peppermint essential oil. Appl Physiol Nutr Metab 42(5):558–561

    Article  CAS  PubMed  Google Scholar 

  23. Stevens C, Best R (2017) Menthol: a fresh ergogenic aid for athletic performance. Sports Med 47(6):1035–1042

    Article  PubMed  Google Scholar 

  24. Jeffries O, Waldron M (2019) The effects of menthol on exercise performance and thermal sensation: a meta-analysis. J Sci Med Sport 22(6):707–715

    Article  PubMed  Google Scholar 

  25. Keringer P et al (2020) Menthol can be safely applied to improve thermal perception during physical exercise: a meta-analysis of randomized controlled trials. Sci Rep 12(10):13636

    Article  Google Scholar 

  26. Moldovan RI, Oprean R (2014) Comparative study of essential oil from two species of Mint grown in Orastie. Farmacia 62:169–182

    CAS  Google Scholar 

  27. Van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471

    Article  Google Scholar 

  28. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30

    CAS  Google Scholar 

  29. Slinkard K, Singleton VL (1977) Total phenol analyses: automation and comparison with manual methods. Am J Enol Vitic 28(1):49–55

    Article  CAS  Google Scholar 

  30. Gibson RS (1990) Food consumption of individuals. In principles of nutritional assessment. Oxford University Press, New York

    Google Scholar 

  31. Institute of Medicine (2000) Dietary reference intakes: applications in dietary assessment. Nat Acad Press, Washington

    Google Scholar 

  32. Santos NST et al (2012) Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiol 32:345–353

    Article  PubMed  Google Scholar 

  33. Weltman A et al (1989) Percentages of maximal heart rate, heart rate reserve, and VO2peak for determining endurance training intensity in sedentary women. Int J Sports Med 10(3):212–216

    Article  CAS  PubMed  Google Scholar 

  34. Borg G (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  CAS  PubMed  Google Scholar 

  35. Davis GR, Etheredge CE, Marcus L, Bellar D (2014) Prolonged sleep deprivation and continuous exercise: effects on melatonin, tympanic temperature, and cognitive function. BioMed Res Int. https://doi.org/10.1155/2014/781863

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hodder SG, Parsons K (2006) The effects of solar radiation on thermal comfort. Int J Biomet 51(3):233–250

    Article  Google Scholar 

  37. Murray R (1996) Dehydration, hyperthermia, and athletes: science and practice. J Athl Train 31(3):248–252

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Casa DJ, Clarkson PM, Roberts WO (2005) American College of Sports Medicine roundtable on hydration and physical activity: consensus statements. Curr Sports Med Rep 4:115–127

    Article  PubMed  Google Scholar 

  39. Cook BG, Cook L, Therrien WJ (2018) Group-difference effect sizes: gauging the practical importance of findings from group-experimental research. Learn Disabil Res Pract. https://doi.org/10.1111/ldrp.12167

    Article  Google Scholar 

  40. Brazilian Society of Nutrology (2009) Use of bioimpedance for the evaluation of body mass. 1:1–13

  41. Brazilian Society of Sports Medicine (2003) Dietary modifications, water replenishment, food supplements and drugs: evidence of ergogenic action and potential health risks. Rev Bras Med Esporte 9(2):57–68

  42. American College of Sports Medicine (2000) Guidelines for graded exercise testing and exercise prescription, 6th edn. Lippincott Williams and Wilkins, Philadelphia, pp 300–312

    Google Scholar 

  43. Kusy K, Zieliński J (2012) Aerobic capacity in speed-power athletes aged 20–90 years vs endurance runners and untrained participants. Scan J Med Sci Sport 24(1):68–79

    Article  Google Scholar 

  44. Kerksick CM et al (2018) ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Spor Nutr 15(38):1–57

    Google Scholar 

  45. Nanchen D (2018) Resting heart rate: what is normal? Heart 104(13):1048–1049

    Article  PubMed  Google Scholar 

  46. Tran Trong T, Riera T, Rinaldi K, Briki W, Hue O (2015) Ingestion of a cold temperature/mentol beverage increases outdoor exercise performance in a hot, humid environment. PLoS One. https://doi.org/10.1371/journal.pone.0123815

    Article  PubMed  PubMed Central  Google Scholar 

  47. Costa MS, Toscano LT, Toscano LLT, Luna VR, Torres RA, Silva JA, Silva AS (2020) Ergogenic potential of foods for performance and recovery: a new alternative in sports supplementation? A systematic review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1844137

    Article  PubMed  Google Scholar 

  48. Doma K, Gahreman D, Connor J (2020) Fruit supplementation reduces indices of exercise-induced muscle damage: a systematic review and meta-analysis. Eur J Sport Sci 21:562–579

    Article  PubMed  Google Scholar 

  49. Sönmez GT et al (2010) Effects of oral supplementation of mint extract on muscle pain and blood lactate. Biom Hum Kin 2:66–69

    Article  Google Scholar 

  50. Ferri A, Adamo S, La Torre A, Marzorati M, Bishop DJ, Miserocchi G (2012) Determinants of performance in 1,500-m runners. Eur J Appl Physiol 112(8):3033–3043

    Article  PubMed  Google Scholar 

  51. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts. Sports Med 39:469–490

    Article  PubMed  Google Scholar 

  52. Gillis DJ, Capone S, Nestor K, Snell M (2020) The influence of menthol dose on human temperature regulation and perception. J Therm Biol 92:1–9

    Article  Google Scholar 

  53. Naito K, Komori M, Kondo Y, Takeuchi M, Iwata S (1997) The effect of L-menthol stimulation of the major palatine nerve on subjective and objective nasal patency. Auris Nasus Larynx 24(2):159–162

    Article  CAS  PubMed  Google Scholar 

  54. Eccles R (2000) Role of cold receptors and menthol in thirst, the drive to breathe and arousal. Appetite 34(1):29–33

    Article  CAS  PubMed  Google Scholar 

  55. Farco JA, Grundmann O (2013) Menthol–pharmacology of an important naturally medicinal “cool.” Mini Rev Med Chem 13(1):124–131

    Article  CAS  PubMed  Google Scholar 

  56. Flood TR, Waldron M, Jeffries O (2017) Oral L-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion. Eur J Appl Physiol 117(7):1501–1512

    Article  CAS  PubMed  Google Scholar 

  57. Mundel T, Jones DA (2010) The effects of swilling an L (-)-menthol solution during exercise in the heat. Eur J Appl Physiol 109(1):59–65

    Article  PubMed  Google Scholar 

  58. Mj B, Corbett J, White D, James J (2012) Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat. Br J Sports Med 6(13):936–942

    Google Scholar 

  59. Delmotte P, Ressmeyer AR, Bai Y, Sanderson MJ (2010) Mechanisms of airway smooth muscle relaxation induced by beta2-adrenergic agonists. Front Biosci 15:750–764

    Article  CAS  Google Scholar 

  60. Ismailoglu UB, Sahin-Erdemli I, Sungur A, Ilhan M (2004) Effects of lipopolysaccharide on epithelium-dependent relaxation in coaxial bioassay. Eur J Pharma 487:233–239

    Article  CAS  Google Scholar 

  61. Pelaia G, Gallelli L, Vatrella A, Grembiale RD, Maselli R, De Sarro GB, Marsico AS (2002) Potential role of potassium channel openers in the treatment of asthma and chronic obstructive pulmonary disease. Life Sci 70:977–990

    Article  CAS  PubMed  Google Scholar 

  62. Racinais S (2010) Different effects of heat exposure upon exercise performance in the morning and afternoon. Scand J Med Sci Sports 20(3):80–89

    Article  PubMed  Google Scholar 

  63. Cheang WS, Lam MY, Wong WT, Tian XY, Lau CW, Zhu Z, Yao X, Huang Y (2013) Menthol relaxes rat aortae, mesenteric and coronary arteries by inhibiting calcium influx. Eur J Pharmacol 702(1–3):79–84

    Article  CAS  PubMed  Google Scholar 

  64. Craighead DH, McCartney NB, Tumlinson JH, Alexander LM (2017) Mechanisms and time course of menthol-induced cutaneous vasodilation. Microvasc Res 110:43–47

    Article  CAS  PubMed  Google Scholar 

  65. Rylander MN, Feng Y, Bass J, Diller KR (2005) Thermally induced injury and heat-shock protein expression in cells and tissues. Ann N Y Acad Sci 1066:222–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Federal University of Paraiba (UFPB) and the Laboratory for the Study of Physical Training Applied to Performance and Health (LETFADS/UFPB) for their support in providing the entire physical working structure for the development of the study. They also thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support in providing the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Sérgio Silva.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda Neto, M., Meireles, A.C.F., Alcântara, M.A. et al. Peppermint essential oil (Mentha piperita L.) increases time to exhaustion in runners. Eur J Nutr 62, 3411–3422 (2023). https://doi.org/10.1007/s00394-023-03235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03235-4

Keywords

Navigation