Skip to main content

Advertisement

Log in

Identification of potential biomarkers in malnutrition children with severity by 1H-NMR-based metabolomics: a preliminary study in the Chinese population

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Child malnutrition is a global public health problem, but the underlying pathophysiologic mechanisms with severity remain poorly understood, and the potential biomarkers served to the clinical diagnosis are still not available. This study aimed to identify the serum metabolic characteristics of malnourished children with severity.

Methods

Fasted overnight serum samples were collected following clinical standard procedures among 275 malnourished and 199 healthy children from the Women and Children’s Hospital, Xiamen University Child Health Department from July 2020 to May 2022. Nuclear magnetic resonance (NMR)-based metabolomics strategy was applied to identify the potential serum biomarkers of malnutrition from 275 malnourished children aged 4 to 84 months with mild (Mil, 199 cases), moderate (Mod, 101 cases), and severe (Sev, 7 cases) malnutrition.

Results

Ten, fifteen, and fifteen differential metabolites were identified from the Mil, Mod, and Sev malnutrition groups, respectively. Eight common metabolites, including increased acetoacetate, acetone, ethanol, succinate, 3-hydroxybutyrate, and decreased alanine, methionine, and N-acetyl-glycoprotein, could be the potential biomarkers for malnourished children. The altered metabolic pathways were mainly related to energy metabolism and amino acid metabolism via the network-based pathway enrichment.

Conclusion

Eight potential biomarkers, including acetoacetate, acetone, ethanol, succinate, 3-hydroxybutyrate, alanine, methionine, and N-acetyl-glycoprotein, could characterize the child malnutrition. Child malnutrition-induced abnormal energy metabolism, impaired nutrition utilization and the reduced nutrient availability, and more metabolic disturbance will appear with the severity. Our results are valuable for further studies on the etiology and pathogenesis of malnutrition for clinical intervention and improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used during the current study are available from the corresponding author on reasonable request.

Abbreviations

3-HB:

3-Hydroxybutyrate

AST:

Aspartate aminotransferase

BMI:

Body mass index

CKMB:

Creatine kinase MB

Con:

Control

GPC:

Glycerophosphorylcholine

HAZ:

Length/height-for-age z score

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

LDH:

Lactate dehydrogenase

LDL:

Low-density lipoprotein

LMI:

Lean mass index

Mil:

Mild malnutrition

Mod:

Moderate malnutrition

NAG:

N-Acetyl-glycoprotein

NMR:

Nuclear magnetic resonance

OPLS-DA:

Orthogonal partial least-squares discrimination analysis

PCA:

Principal component analysis

PLS-DA:

Partial least-squares discrimination analysis

PUFAs:

Polyunsaturated fatty acids

SAM:

Severe acute malnutrition

Sev:

Severe malnutrition

SMOTE:

Synthetic minority over-sampling technique

T2DM:

Type II diabetes mellitus

TCA:

Tricarboxylic acid

VIP:

Variable importance in projection

VLDL:

Very low-density lipoprotein

WAZ:

Weight-for-age z score

WHZ:

Weight-for-height z score

References

  1. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B (2007) Developmental potential in the first 5 years for children in developing countries. Lancet 369(9555):60–70. https://doi.org/10.1016/s0140-6736(07)60032-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martins V, Florencio T, Grillo L, Franco M, Martins P, Clemente A, Santos C, Vieira M, Sawaya A (2011) Long-lasting effects of undernutrition. Int J Environ Res Public Health 8:1817–1846. https://doi.org/10.3390/ijerph8061817

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guerrant RL, Oriá RB, Moore SR, Oriá MO, Lima AA (2008) Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev 66(9):487–505. https://doi.org/10.1111/j.1753-4887.2008.00082.x

    Article  PubMed  Google Scholar 

  4. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS (2008) Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371(9609):340–357. https://doi.org/10.1016/s0140-6736(07)61692-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371(9608):243–260. https://doi.org/10.1016/s0140-6736(07)61690-0

    Article  PubMed  Google Scholar 

  6. Semba RD, Shardell M, Sakr Ashour FA, Moaddel R, Trehan I, Maleta KM, Ordiz MI, Kraemer K, Khadeer MA, Ferrucci L, Manary MJ (2016) Child stunting is associated with low circulating essential amino acids. EBioMedicine 6:246–252. https://doi.org/10.1016/j.ebiom.2016.02.030

    Article  PubMed  PubMed Central  Google Scholar 

  7. Semba RD, Trehan I, Li X, Salem N Jr, Moaddel R, Ordiz MI, Maleta KM, Kraemer K, Manary MJ (2017) Low serum ω-3 and ω-6 polyunsaturated fatty acids and other metabolites are associated with poor linear growth in young children from rural Malawi. Am J Clin Nutr 106(6):1490–1499. https://doi.org/10.3945/ajcn.117.164384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mayneris-Perxachs J, Lima AA, Guerrant RL, Leite ÁM, Moura AF, Lima NL, Soares AM, Havt A, Moore SR, Pinkerton R, Swann JR (2016) Urinary N-methylnicotinamide and β-aminoisobutyric acid predict catch-up growth in undernourished Brazilian children. Sci Rep 6:19780. https://doi.org/10.1038/srep19780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartz S, Mody A, Hornik C, Bain J, Muehlbauer M, Kiyimba T, Kiboneka E, Stevens R, Bartlett J, St Peter JV, Newgard CB, Freemark M (2014) Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab 99(6):2128–2137. https://doi.org/10.1210/jc.2013-4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freemark M (2015) Metabolomics in nutrition research: biomarkers predicting mortality in children with severe acute malnutrition. Food Nutr Bull 36(1 Suppl):S88-92. https://doi.org/10.1177/15648265150361s114

    Article  PubMed  Google Scholar 

  11. Di Giovanni V, Bourdon C, Wang DX, Seshadri S, Senga E, Versloot CJ, Voskuijl W, Semba RD, Trehan I, Moaddel R, Ordiz MI, Zhang L, Parkinson J, Manary MJ, Bandsma RH (2016) Metabolomic changes in serum of children with different clinical diagnoses of malnutrition. J Nutr 146(12):2436–2444. https://doi.org/10.3945/jn.116.239145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bourdon C, Lelijveld N, Thompson D, Dalvi PS, Gonzales GB, Wang D, Alipour M, Wine E, Chimwezi E, Wells JC, Kerac M, Bandsma R, Nyirenda MJ (2019) Metabolomics in plasma of Malawian children 7 years after surviving severe acute malnutrition: “ChroSAM” a cohort study. EBioMedicine 45:464–472. https://doi.org/10.1016/j.ebiom.2019.06.041

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gonzales GB, Lelijveld N, Bourdon C, Chimwezi E, Nyirenda MJ, Wells JC, Kerac M, Bandsma RHJ (2020) Childhood malnutrition and association of lean mass with metabolome and hormone profile in later life. Nutrients. https://doi.org/10.3390/nu12113593

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thompson DS, Bourdon C, Massara P, Boyne MS, Forrester TE, Gonzales GB, Bandsma RHJ (2020) Childhood severe acute malnutrition is associated with metabolic changes in adulthood. JCI Insight. https://doi.org/10.1172/jci.insight.141316

    Article  PubMed  PubMed Central  Google Scholar 

  15. Onis M, Garza C, Onyango AW, Martorell R (2006) WHO child growth standards. Acta Paediatr 450(Supplement 450):1–101

    Google Scholar 

  16. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953

    Article  Google Scholar 

  17. Chawla NV, Lazarevic A, Hall LO, Bowyer KW (2003) SMOTEBoost: Improving prediction of the minority class in boosting. In: Lavrac N, Gamberger D, Todorovski L, Blockeel H (eds) Knowledge discovery in databases: Pkdd 2003, proceedings, vol 2838. Lecture notes in artificial intelligence. pp 107–119. https://doi.org/10.1007/978-3-540-39804-2_12

  18. Picart-Armada S, Fernández-Albert F, Vinaixa M, Yanes O, Perera-Lluna A (2018) FELLA: an R package to enrich metabolomics data. BMC Bioinformatics 19(1):538. https://doi.org/10.1186/s12859-018-2487-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603-610. https://doi.org/10.1093/nar/gkn810

    Article  CAS  PubMed  Google Scholar 

  20. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Metabolite projection analysis for fast identification of metabolites in metabonomics. Application in an amiodarone study. Anal Chem 78(11):3551–3561. https://doi.org/10.1021/ac0518351

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Zhao Z, Feng J, Gao J, Chen Z (2013) Understanding the metabolic fate and assessing the biosafety of MnO nanoparticles by metabonomic analysis. Nanotechnology 24(45):455102. https://doi.org/10.1088/0957-4484/24/45/455102

    Article  CAS  PubMed  Google Scholar 

  22. Aronoff SL, Berkowitz K, Shreiner B, Want L (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 17(3):183–190. https://doi.org/10.2337/diaspect.17.3.183

    Article  Google Scholar 

  23. Gray LR, Tompkins SC, Taylor EB (2014) Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 71(14):2577–2604. https://doi.org/10.1007/s00018-013-1539-2

    Article  CAS  PubMed  Google Scholar 

  24. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46(10):1589–1595. https://doi.org/10.1172/jci105650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ (2016) Perspective: the potential role of essential amino acids and the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the pathogenesis of child stunting. Adv Nutr 7(5):853–865. https://doi.org/10.3945/an.116.013276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17. https://doi.org/10.1007/s00726-009-0269-0

    Article  CAS  PubMed  Google Scholar 

  27. Ligthart-Melis GC, Engelen M, Simbo SY, Ten Have GAM, Thaden JJ, Cynober L, Deutz NEP (2020) Metabolic consequences of supplemented methionine in a clinical context. J Nutr 150(Suppl 1):2538s–2547s. https://doi.org/10.1093/jn/nxaa254

    Article  PubMed  Google Scholar 

  28. Lima AA, Brito LF, Ribeiro HB, Martins MC, Lustosa AP, Rocha EM, Lima NL, Monte CM, Guerrant RL (2005) Intestinal barrier function and weight gain in malnourished children taking glutamine supplemented enteral formula. J Pediatr Gastr Nutr 40(1):28–35. https://doi.org/10.1097/00005176-200501000-00006

    Article  CAS  Google Scholar 

  29. Briassouli E, Briassoulis G (2012) Glutamine randomized studies in early life: the unsolved riddle of experimental and clinical studies. Clin Dev Immunol 2012:749189. https://doi.org/10.1155/2012/749189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeBoer MD, Lima AA, Oría RB, Scharf RJ, Moore SR, Luna MA, Guerrant RL (2012) Early childhood growth failure and the developmental origins of adult disease: do enteric infections and malnutrition increase risk for the metabolic syndrome? Nutr Rev 70(11):642–653. https://doi.org/10.1111/j.1753-4887.2012.00543.x

    Article  PubMed  Google Scholar 

  31. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303(6809):1019–1022. https://doi.org/10.1136/bmj.303.6809.1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martins PA, Sawaya AL (2006) Evidence for impaired insulin production and higher sensitivity in stunted children living in slums. Br J Nutr 95(5):996–1001. https://doi.org/10.1079/bjn20061754

    Article  CAS  PubMed  Google Scholar 

  33. Rytter MJ, Kolte L, Briend A, Friis H, Christensen VB (2014) The immune system in children with malnutrition—a systematic review. PLoS ONE 9(8):e105017. https://doi.org/10.1371/journal.pone.0105017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schaible UE, Kaufmann SH (2007) Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 4(5):e115. https://doi.org/10.1371/journal.pmed.0040115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mondal D, Haque R, Sack RB, Kirkpatrick BD, Petri WA Jr (2009) Attribution of malnutrition to cause-specific diarrheal illness: evidence from a prospective study of preschool children in Mirpur, Dhaka, Bangladesh. Am J Trop Med Hyg 80(5):824–826

    Article  PubMed  Google Scholar 

  36. Khatun F, Faruque AS, Koeck JL, Olliaro P, Millet P, Paris N, Malek MA, Salam MA, Luby S (2011) Changing species distribution and antimicrobial susceptibility pattern of Shigella over a 29-year period (1980–2008). Epidemiol Infect 139(3):446–452. https://doi.org/10.1017/s0950268810001093

    Article  CAS  PubMed  Google Scholar 

  37. Chan J, Tian Y, Tanaka KE, Tsang MS, Yu K, Salgame P, Carroll D, Kress Y, Teitelbaum R, Bloom BR (1996) Effects of protein calorie malnutrition on tuberculosis in mice. Proc Natl Acad Sci USA 93(25):14857–14861. https://doi.org/10.1073/pnas.93.25.14857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ing R, Su Z, Scott ME, Koski KG (2000) Suppressed T helper 2 immunity and prolonged survival of a nematode parasite in protein-malnourished mice. Proc Natl Acad Sci USA 97(13):7078–7083. https://doi.org/10.1073/pnas.97.13.7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant nos. 82072015 and 82103859), the Natural Science Foundation of Fujian Province of China (no. 2022J01062), and Guiding project of the Natural Science Foundation of Fujian (no. 2019D010).

Author information

Authors and Affiliations

Authors

Contributions

GS, JF, JC, RH, and YL designed the research; YC and QL performed the NMR experiment; YC analyzed data and wrote the manuscript; JC, RH, JW, and YL collected and analyzed data; JF and GS provided critical revision for important intellectual content of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guiping Shen.

Ethics declarations

Conflict of interest

No conflicts of interest are declared for any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2512 KB)

Supplementary file2 (XLSX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Chen, J., Huang, R. et al. Identification of potential biomarkers in malnutrition children with severity by 1H-NMR-based metabolomics: a preliminary study in the Chinese population. Eur J Nutr 62, 3193–3205 (2023). https://doi.org/10.1007/s00394-023-03224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03224-7

Keywords

Navigation