Skip to main content

Advertisement

Log in

mTOR pathway candidate genes and energy intake interaction on breast cancer risk in Black women from the Women’s Circle of Health Study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Excessive energy intake has been shown to affect the mammalian target of the rapamycin (mTOR) signaling pathway and breast cancer risk. It is not well understood whether there are gene-environment interactions between mTOR pathway genes and energy intake in relation to breast cancer risk.

Methods

The study included 1642 Black women (809 incident breast cancer cases and 833 controls) from the Women’s Circle of Health Study (WCHS). We examined interactions between 43 candidate single-nucleotide polymorphisms (SNPs) in 20 mTOR pathway genes and quartiles of energy intake in relation to breast cancer risk overall and by ER− defined subtypes using Wald test with a 2-way interaction term.

Results

AKT1 rs10138227 (C > T) was only associated with a decreased overall breast cancer risk among women in quartile (Q)2 of energy intake, odds ratio (OR) = 0.60, 95% confidence interval (CI) 0.40, 0.91 (p-interaction = 0.042). Similar results were found in ER− tumors. AKT rs1130214 (C > A) was associated with decreased overall breast cancer risk in Q2 (OR = 0.63, 95% CI 0.44, 0.91) and Q3 (OR = 0.65, 95% CI 0.48, 0.89) (p-interaction = 0.026). HIF-1α C1772T rs11549465 (C > T) was associated with decreased overall breast cancer risk in Q4 (OR = 0.29, 95% CI 0.14, 0.59, p-interaction = 0.007); the results were similar in ER+ tumors. These interactions became non-significant after correction for multiple comparisons.

Conclusion

Our findings suggest that mTOR genetic variants may interact with energy intake in relation to breast cancer risk, including the ER− subtype, in Black women. Future studies should confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

AKT1:

AKT Serine/Threonine Kinase 1 or Protein Kinase B

BMI:

Body mass index

CI:

Confidence intervals

EGF:

Epidermal growth factor

EIF4E:

Eukaryotic initiation factor 4EER: estrogen receptor

HIF1A:

Hypoxia inducible factor 1 subunit alpha

HIF-1:

Hypoxia-inducible factor-1

IGF-I:

Insulin-like growth factor I

4E-BP1:

Eukaryotic initiation factor 4E-binding protein 1

FFQs:

Food frequency questionnaires

mTOR:

Mammalian target of rapamycin

mTORC1:

MTOR complex 1

mTORC2:

MTOR complex 2

OR:

Odds ratio

PDGF:

Platelet-derived growth factor

PI3K:

Phosphatidylinositol 3-kinase

Q:

Quartile

RPS6KB1:

Ribosomal protein S6 kinase B1

SNPs:

Single-nucleotide polymorphisms

S6K1:

P70 ribosomal S6 kinase 1

TSC2:

Tuberous sclerosis complex 2

WCHS:

Women’s Circle of Health Study

References

  1. Hursting SD, Lashinger LM, Wheatley KW, Rogers CJ, Colbert LH, Perkins SN (2008) Reducing the weight of cancer: mechanistic targets for breaking the obesity – carcinogenesis link. Best Pract Res Clin Endocrinol Metab 22(4):659–669. https://doi.org/10.1016/j.beem.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  2. World Cancer Research Fund/American Institute for Cancer Research (2018). Diet, nutrition, physical activity and cancer: a global perspective.dietandcancerreport.org. Accessed 3 March 2023

  3. World Cancer Research Fund/American Institute for Cancer Research (2018) Diet, nutrition, physical activity and breast cancer.dietandcancerreport.org. Accessed 3 March 2023

  4. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism : a recipe for cancer growth. Genes Dev 514:537–548

    Article  Google Scholar 

  5. Liu P, Cheng H, Roberts TM, Zhao JJ (2011) Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  Google Scholar 

  6. Altomare DA, Khaled AR (2012) Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr Med Chem. 19(22):3748–62. http://www.ncbi.nlm.nih.gov/pubmed/22680924%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3414727

  7. Ma B, Shan M-H, Sun G, Ren G-H, Dong C, Yao X et al (2015) Immunohistochemical analysis of phosphorylated mammalian target of rapamycin and its downstream signaling components in invasive breast cancer. Mol Med Rep 12:5246–5254

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Beugnet A, Murakami M, Yamanaka S, Proud CG (2005) Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 25(7):2558–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gingras A, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF et al (1999) Regulation of 4E-BP1 phosphorylation : a novel two-step mechanism. Genes Dev 13(11):1422–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gingras A, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK et al (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15(21):2852–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laplante M, David M (2009) mTOR signaling at a glance. Cell Sci 122:3589–3594

    Article  CAS  Google Scholar 

  12. Stephens L, Anderson K, Stokoe D, Erdjument-bromage H, Painter GF, Holmes AB et al (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279(5351):710–714

    Article  CAS  PubMed  Google Scholar 

  13. Manning B, Cantley L (2007) AKT/PKB signaling: Navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zarogoulidis P, Lampaki S, Francis Turner J, Huang H, Kakolyris S, Syrigos K et al (2014) mTOR pathway: A current, up-to-date mini-review. Oncol Lett 8(6):2367–2370

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng TD, Omilian AR, Yao S, Sanchez P V, Polk LZ, Zhang W, et al (2020) Body fatness and mTOR pathway activation of breast cancer in the Women’s Circle of Health Study. npj Breast Cancer.6(45):1–9.

  16. Moore T, Beltran L, Carbajal S, Strom S, Traag J, Hursting SD et al (2008) Dietary Energy Balance Modulates Signaling through the Akt / Mammalian Target of Rapamycin Pathways in Multiple Epithelial Tissues. Cancer Prev Res 1(1):65–77

    Article  CAS  Google Scholar 

  17. Jiang W, Zhu Z, Thompson HJ (2013) Effects of limiting energy availability via diet and physical activity on mammalian target of rapamycin-related signaling in rat mammary carcinomas. Carcinogenesis 34(2):378–387

    Article  CAS  PubMed  Google Scholar 

  18. Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21(2):209–218

    Article  CAS  PubMed  Google Scholar 

  19. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM et al (2010) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204

    Article  Google Scholar 

  20. Speakman JR, Hambly C (2007) Starving for Life: What animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. J Nutr 137(4):1078–1086

    Article  CAS  PubMed  Google Scholar 

  21. Kritchevsky D (2002) Caloric restriction and experimental carcinogenesis. Hybrid Hybridomics 21(2):147–151

    Article  PubMed  Google Scholar 

  22. Park J, Kang S, Ahn KS, Um J, Yang WM, Yun M (2020) Inhibition of the PI3K-AKT-mTOR pathway suppresses the adipocyte-mediated proliferation and migration of breast cancer cells. J Cancer 11(9):2552–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fair A, Montgomery K (2009) Energy balance, physical activity, and cancer risk. In: Verma M, editor. Methods in Molecular Biology. p. 57–88.

  24. Signorello LB, Munro HM, Buchowski MS, Schlundt DG, Cohen SS, Hargreaves MK et al (2009) Estimating nutrient intake from a food frequency questionnaire: incorporating the elements of race and geographic region. Am J Epidemiol 170(1):104–111

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sanderson M, Lipworth L, Shen-miller D, Nechuta S (2015) Energy-related indicators and breast cancer risk among White and Black women. PLoS ONE 10(4):8–9

    Article  Google Scholar 

  26. Ambrosone CB, Ciupak GL, Bandera EV, Jandorf L, Bovbjerg DH, Zirpoli G et al (2009) Conducting molecular epidemiological research in the age of HIPAA: A multi-institutional case-control study of breast cancer in African-American and European-American women. J Oncol 2009:871250

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bandera EV, Chandran U, Zirpoli G, Mccann SE, Ciupak G, Ambrosone CB (2013) Rethinking sources of representative controls for the conduct of case – control studies in minority populations. BMC Med Res Methodol 13(1):1

    Article  Google Scholar 

  28. Cheng TD, Ambrosone CB, Hong C, Lunetta KL, Liu S, Hu Q et al (2015) Genetic variants in the mTOR pathway and breast cancer risk in African American women. Carcinogenesis 00(2):1–7

    Google Scholar 

  29. Stolk L, Perry JR, Chasman DI, He C, Mangino M, Sulem P, Barbalic M, Broer L, Byrne EM, Ernst F, Esko T, Franceschini N, Gudbjartsson DF, Hottenga JJ, Kraft P, McArdle PF, Porcu E, Shin SY, Smith AV, van Wingerden S, Zhai G, Zhuang WV, Albrecht E, Alizade LK (2012) Meta-analyses identify 13 novel loci associated with age at menopause and highlights DNA repair and immune pathways. Nat Genet 44(3):260–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Elks CE, Perry JR, Sulem P, Chasman DI, Franceschini N, He C, Lunetta KL, Visser JA, Byrne EM, Cousminer DL, Gudbjartsson DF, Esko T, Feenstra B, Hottenga JJ, Koller DL, Kutalik Z, Lin P, Mangino M, Marongiu M, McArdle PF, Smith AV, Stolk L, van Wingerden MA (2011) Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet 42(12):1077–1085

    Article  Google Scholar 

  31. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet.2(12).

  32. Bandera E V, Chandran U, Zirpoli G, Gong Z, Mccann SE, Hong C, et al (2013) Body fatness and breast cancer risk in women of African ancestry. BMC Cancer.13(475).

  33. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300

    Google Scholar 

  34. Ilozumba MN, Yaghjyan L, Datta S, Zhao J, Hong C-C, Lunetta KL, et al (2023) mTOR pathway candidate genes and obesity interaction on breast cancer risk in black women from the Women ’ s Circle of Health Study. Cancer Causes Control.https://doi.org/10.1007/s10552-022-01657-9

  35. Lin J, Wang J, Greisinger AJ, Grossman HB, Michele R, Dinney CP, et al (2011) Energy balance, the PI3K-AKT-mTOR pathway genes and the risk of bladder cancer. Cancer Prev Res (Phila).3(4):505–17.

  36. Simons CCJM, Schouten LJ, Godschalk RWL, van Schooten FJ, Stoll M, Van Steen K et al (2022) Polymorphisms in the mTOR-PI3K-Akt pathway, energy balance-related exposures and colorectal cancer risk in the Netherlands Cohort Study. BioData Min 15(1):1–20

    Article  Google Scholar 

  37. Allam L, Arrouchi H, Ghrifi F, El KA, Kandoussi I, Bendahou MA et al (2020) AKT1 polymorphism (rs10138227) and risk of colorectal cancer in Moroccan population: A case control study. Asian Pacific J Cancer Prev 21(11):3165–3170

    Article  CAS  Google Scholar 

  38. Sirisena ND, Adeyemo A, Kuruppu AI, Samaranayake N, Dissanayake VHW (2018) Genetic variants associated with clinicopathological profiles in sporadic breast cancer in Sri Lankan women. J Breast Cancer 21(2):165–172

    Article  PubMed  PubMed Central  Google Scholar 

  39. Crezee T, Petrulea M, Piciu D, Jaeger M, Smit JWA, Plantinga TS et al (2020) AKT1 genetic variants confer increased susceptibility to thyroid cancer. Endocr Connect 9(11):1065–1074

    Article  PubMed  PubMed Central  Google Scholar 

  40. Slattery ML, Herrick JS, Lundgreen A, Fitzpatrick FA, Curtin K, Wolff RK (2010) Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis 31(9):1604–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He J, Wang MY, Qiu LX, Zhu ML, Shi TY, Zhou XY et al (2013) Genetic variations of mTORC1 genes and risk of gastric cancer in an eastern chinese population. Mol Carcinog 52(SUPPL1):70–79

    Article  Google Scholar 

  42. Piao Y, Li Y, Xu Q, Liu JW, Xing CZ, Xie XD et al (2015) Association of mTOR and AKT gene polymorphisms with susceptibility and survival of gastric cancer. PLoS ONE 10(8):1–19

    Article  Google Scholar 

  43. Li Q, Gu C, Zhu Y, Wang M, Yang Y, Wang J, et al (2013) Polymorphisms in the mTOR Gene and Risk of Sporadic Prostate Cancer in an Eastern Chinese Population. PLoS One 8(8)

  44. Zining J, Lu X, Caiyun H, Yuan Y (2016) Genetic polymorphisms of mTOR and cancer risk: A systematic review and updated meta-analysis. Oncotarget 7(35):57464–57480

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yan Q, Chen P, Wang S, Liu N, Zhao P, Gu A (2014) Association between HIF-1 α C1772T / G1790A polymorphisms and cancer susceptibility : an updated systematic review and meta-analysis based on 40 case-control studies. BMC Cancer 14(950):1–16

    Google Scholar 

  46. GeneCards (2023). GeneCards®: The Human Gene Database.2023.https://www.genecards.org/

  47. Broad Institute (2023) HaploReg v3. https://pubs.broadinstitute.org/mammals/haploreg/haploreg_v3.php

  48. Thomas CC, Deak M, Alessi DR, Van Aalten DMF (2002) High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12(14):1256–1262

    Article  CAS  PubMed  Google Scholar 

  49. Milburn CC, Deak M, Kelly SM, Price NC, Alessi DR, Van Aalten DMF (2003) Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem J 375(3):531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol Cell 10(1):151–162

    Article  CAS  PubMed  Google Scholar 

  51. Muñoz-Pinedo C, El Mjiyad N, Ricci JE (2012) Cancer metabolism : current perspectives and future directions. Cell Death Dis 3(e248):1–10

    Google Scholar 

  52. Michels KB (2004) Caloric Restriction and Incidence of Breast Cancer. JAMA 291(10):1226–1230

    Article  CAS  PubMed  Google Scholar 

  53. Harvie M, Howell A (2012) Energy restriction and the prevention of breast cancer. Proc Nutr Soc 71(2):263–275

    Article  CAS  PubMed  Google Scholar 

  54. Dogan S, Johannsen AC, Grande JPCM (2011) Effects of intermittent and chronic calorie restriction on mammalian target of rapamycin (mTOR) and IGF-I signaling pathways in mammary fat pad tissues and mammary tumors. Nutr Cancer 63(3):389–401

    Article  CAS  PubMed  Google Scholar 

  55. Meynet O, lie, Ricci J, (2014) Caloric restriction and cancer : molecular mechanisms and clinical implications. Trends Mol Med August 20(8):419–427

    Article  CAS  Google Scholar 

  56. Rothman K (1990) No adjustments are needed for multiple comparisons. Epidemiology 1(1):43–46

    Article  CAS  PubMed  Google Scholar 

  57. Kumanyika SK, Mauger D, Mitchell DC, Phillips B, Smiciklas-Wright H, Palmer JR (2003) Relative validity of food frequency questionnaire nutrient estimates in the black women’s health study. Ann Epidemiol 13(2):111–118

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the US National Institutes of Health, The National Cancer Institute (grant number P01 CA151135 J.R.P. and C.B.A, R01CA098663 to J.R.P.; R01 CA100598 to C.B.A. and E.V.B; R01 CA185623, P30 CA016056, P30 CA072720, K07 CA201334, R37 CA248371); the Breast Cancer Research Foundation (C.B.A., C–CH).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MNI, TYC. Data acquisition: JZ, JRP, SY, CCH, EVB, CBA. Writing—initial draft: MNI. Data analysis: MNI. Data interpretation: MNI, TYC, LY. Contributed to the statistical methods: KLL, TYC, LY, SD, JZ. Revised the paper: MNI, TYC, LY, SD, JZ, GZ, SY, EB. Writing—final review and approval: all authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mmadili N. Ilozumba or Ting-Yuan David Cheng.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 142 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilozumba, M.N., Yaghjyan, L., Datta, S. et al. mTOR pathway candidate genes and energy intake interaction on breast cancer risk in Black women from the Women’s Circle of Health Study. Eur J Nutr 62, 2593–2604 (2023). https://doi.org/10.1007/s00394-023-03176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03176-y

Keywords

Navigation