Skip to main content
Log in

Effects of resistant starch on glycemic response, postprandial lipemia and appetite in subjects with type 2 diabetes

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Resistant starch (RS) content has exhibited beneficial effects on glycemic control; however, few studies have investigated the effects of this substance on postprandial responses and appetite in subjects with type 2 diabetes (T2D). Here, we aimed to examine the effects of RS from two sources on glycemic response (GR), postprandial lipemia, and appetite in subjects with T2D.

Methods

In a randomized and crossover study, 17 subjects with T2D consumed native banana starch (NBS), high-amylose maize starch (HMS) or digestible maize starch (DMS) for 4 days. On day 5, a 6-h oral meal tolerance test (MTT) was performed to evaluate glycemic and insulinemic responses as well as postprandial lipemia. Besides, subjective appetite assessment was measured using a visual analogue scale.

Results

NBS induced a reduction on fasting glycemia, glycemia peak and insulinemic response during MTT. However, no modifications on postprandial lipemia were observed after RS treatments. Both NBS and HMS reduced hunger and increased satiety.

Conclusion

NBS supplementation induced more beneficial effects on glycemic metabolism than HMS even when all interventions were matched for digestible starch content. RS intake did not modify postprandial lipemia, however, positively affected subjective appetite rates.

Trial registration: This trial was retrospectively registered at www.anzctr.org.au (ACTRN12621001382864) on October 11, 2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset used in this publication is available from the corresponding author on reasonable request.

References

  1. Ansar S, Koska J, Reaven PD (2011) Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol 10(1):61. https://doi.org/10.1186/1475-2840-10-61

    Article  CAS  PubMed  Google Scholar 

  2. Hanssen NMJ, Kraakman MJ, Flynn MC, Nagareddy PR, Schalkwijk CG, Murphy AJ (2020) Postprandial glucose spikes, an important contributor to cardiovascular disease in diabetes? Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2020.570553

    Article  PubMed  Google Scholar 

  3. Lotfollahi Z, Mello APdQ, Costa ES, Oliveira CLP, Damasceno NRT, Izar MC et al (2020) Green-banana biomass consumption by diabetic patients improves plasma low-density lipoprotein particle functionality. Sci Rep 10(1):12269. https://doi.org/10.1038/s41598-020-69288-1

    Article  CAS  PubMed  Google Scholar 

  4. Kristensen M, Savorani F, Christensen S, Engelsen SB, Bugel S, Toubro S et al (2013) Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutr Metab Cardiovasc Dis 23(2):136–143. https://doi.org/10.1016/j.numecd.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  5. Khossousi A, Binns CW, Dhaliwal SS, Pal S (2008) The acute effects of psyllium on postprandial lipaemia and thermogenesis in overweight and obese men. Br J Nutr 99(5):1068–1075. https://doi.org/10.1017/S0007114507864804

    Article  CAS  PubMed  Google Scholar 

  6. Lockyer S, Nugent AP (2017) Health effects of resistant starch. Nutr Bull 42(1):10–41. https://doi.org/10.1111/nbu.12244

    Article  Google Scholar 

  7. Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch—a review. Compr Rev Food Sci Food Saf 5(1):1–17. https://doi.org/10.1111/j.1541-4337.2006.tb00076.x

    Article  CAS  PubMed  Google Scholar 

  8. Maki KC, Pelkman CL, Finocchiaro ET, Kelley KM, Lawless AL, Schild AL et al (2012) Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr 142(4):717–723. https://doi.org/10.3945/jn.111.152975

    Article  CAS  PubMed  Google Scholar 

  9. Robertson MD, Wright JW, Loizon E, Debard C, Vidal H, Shojaee-Moradie F et al (2012) Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. J Clin Endocrinol Metab 97(9):3326–3332. https://doi.org/10.1210/jc.2012-1513

    Article  CAS  PubMed  Google Scholar 

  10. Dhull SB, Malik T, Kaur R, Kumar P, Kaushal N, Singh A (2021) Banana starch: properties illustration and food applications—a review. Starch-Stärke 73(1–2):2000085. https://doi.org/10.1002/star.202000085

    Article  CAS  Google Scholar 

  11. Ble-Castillo JL, Aparicio-Trapala MA, Francisco-Luria MU, Cordova-Uscanga R, Rodriguez-Hernandez A, Mendez JD et al (2010) Effects of native banana starch supplementation on body weight and insulin sensitivity in obese type 2 diabetics. Int J Environ Res Public Health 7(5):1953–1962. https://doi.org/10.3390/ijerph7051953

    Article  CAS  PubMed  Google Scholar 

  12. Ble-Castillo JL, Aparicio-Trápala MA, Gómez-Vázquez A, Rodríguez-Hernández A, Mendez JD, Juárez-Rojop IE et al (2012) Potential beneficial effects of native banana starch on glycemia and insulin resistance in obese non-diabetic women. Interciencia 37(6):470–476

    Google Scholar 

  13. Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, Pérez-Álvarez JA (2010) Resistant starch as functional ingredient: a review. Food Res Int 43(4):931–942. https://doi.org/10.1016/j.foodres.2010.02.004

    Article  CAS  Google Scholar 

  14. Yuan HC, Meng Y, Bai H, Shen DQ, Wan BC, Chen LY (2018) Meta-analysis indicates that resistant starch lowers serum total cholesterol and low-density cholesterol. Nutr Res 54:1–11. https://doi.org/10.1016/j.nutres.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  15. Park OJ, Ekang N, Chang MJ, Kim WK (2004) Resistant starch supplementation influences blood lipid concentrations and glucose control in overweight subjects. J Nutr Sci Vitaminol 50(2):93–99. https://doi.org/10.3177/jnsv.50.93

    Article  CAS  PubMed  Google Scholar 

  16. Nichenametla SN, Weidauer LA, Wey HE, Beare TM, Specker BL, Dey M (2014) Resistant starch type 4-enriched diet lowered blood cholesterols and improved body composition in a double blind controlled cross-over intervention. Mol Nutr Food Res 58(6):1365–1369. https://doi.org/10.1002/mnfr.201300829

    Article  CAS  PubMed  Google Scholar 

  17. de Oliveira Lomeu FLR, Vieira CR, Lucia FD, Veiga S, Martino HSD, Silva RR (2021) Cocoa and unripe banana flour beverages improve anthropometric and biochemical markers in overweight women: a randomised double-blind study. Int J Vitam Nutr Res 91(3–4):325–334. https://doi.org/10.1024/0300-9831/a000637

    Article  CAS  PubMed  Google Scholar 

  18. Dodevska MS, Sobajic SS, Djordjevic PB, Dimitrijevic-Sreckovic VS, Spasojevic-Kalimanovska VV, Djordjevic BI (2016) Effects of total fibre or resistant starch-rich diets within lifestyle intervention in obese prediabetic adults. Eur J Nutr 55(1):127–137. https://doi.org/10.1007/s00394-015-0831-3

    Article  CAS  PubMed  Google Scholar 

  19. Ble-Castillo JL, Juárez-Rojop IE, Tovilla-Zárate CA, García-Vázquez C, Servin-Cruz MZ, Rodríguez-Hernández A et al (2017) Acute consumption of resistant starch reduces food intake but has no effect on appetite ratings in healthy subjects. Nutrients. https://doi.org/10.3390/nu9070696

    Article  PubMed  PubMed Central  Google Scholar 

  20. White U, Peterson CM, Beyl RA, Martin CK, Ravussin E (2020) Resistant starch has no effect on appetite and food intake in individuals with prediabetes. J Acad Nutr Diet 120(6):1034–1041. https://doi.org/10.1016/j.jand.2020.01.017

    Article  PubMed  Google Scholar 

  21. Emilien CH, Hsu WH, Hollis JH (2017) Effect of resistant wheat starch on subjective appetite and food intake in healthy adults. Nutrition 43–44:69–74. https://doi.org/10.1016/j.nut.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  22. Al-Mana NM, Robertson MD (2018) Acute effect of resistant starch on food intake, appetite and satiety in overweight/obese males. Nutrients. https://doi.org/10.3390/nu10121993

    Article  PubMed  Google Scholar 

  23. Peterson CM, Beyl RA, Marlatt KL, Martin CK, Aryana KJ, Marco ML et al (2018) Effect of 12 wk of resistant starch supplementation on cardiometabolic risk factors in adults with prediabetes: a randomized controlled trial. Am J Clin Nutr 108(3):492–501. https://doi.org/10.1093/ajcn/nqy121

    Article  PubMed  Google Scholar 

  24. García-Vázquez C, Ble-Castillo JL, Arias-Córdova Y, Córdova-Uscanga R, Tovilla-Zárate CA, Juárez-Rojop IE et al (2019) Effects of resistant starch ingestion on postprandial lipemia and subjective appetite in overweight or obese subjects. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16203827

    Article  PubMed  Google Scholar 

  25. Arias-Cordova Y, Ble-Castillo JL, Garcia-Vazquez C, Olvera-Hernandez V, Ramos-Garcia M, Navarrete-Cortes A et al (2021) Resistant starch consumption effects on glycemic control and glycemic variability in patients with type 2 diabetes: a randomized crossover study. Nutrients. https://doi.org/10.3390/nu13114052

    Article  PubMed  Google Scholar 

  26. Waliszewski KN, Aparicio MA, LsA B, Monroy JA (2003) Changes of banana starch by chemical and physical modification. Carbohyd Polym 52(3):237–242. https://doi.org/10.1016/S0144-8617(02)00270-9

    Article  CAS  Google Scholar 

  27. Pérez-Lizaur AB, Castro-Becerra AL (2008) Sistema Mexicano de Alimentos Equivalentes, 3rd edn. Fomento de Nutrición y Salud, México

    Google Scholar 

  28. Flint A, Raben A, Blundell JE, Astrup A (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24(1):38–48. https://doi.org/10.1038/sj.ijo.0801083

    Article  CAS  PubMed  Google Scholar 

  29. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. https://doi.org/10.1007/BF00280883

    Article  CAS  PubMed  Google Scholar 

  30. Pappas C, Kandaraki EA, Tsirona S, Kountouras D, Kassi G, Diamanti-Kandarakis E (2016) Postprandial dysmetabolism: too early or too late? Hormones 15(3):321–344. https://doi.org/10.14310/horm.2002.1697

    Article  PubMed  Google Scholar 

  31. Cheng P-C, Kao C-H (2021) Postprandial plasma glucose excursion is associated with an atherogenic lipid profile in individuals with type 2 diabetes mellitus: a cross-sectional study. PLoS ONE 16(10):e0258771. https://doi.org/10.1371/journal.pone.0258771

    Article  CAS  PubMed  Google Scholar 

  32. Bodinham CL, Frost GS, Robertson MD (2010) Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr 103(6):917–922. https://doi.org/10.1017/S0007114509992534

    Article  CAS  PubMed  Google Scholar 

  33. Johnston KL, Thomas EL, Bell JD, Frost GS, Robertson MD (2010) Resistant starch improves insulin sensitivity in metabolic syndrome. Diabet Med 27(4):391–397. https://doi.org/10.1111/j.1464-5491.2010.02923.x

    Article  CAS  PubMed  Google Scholar 

  34. Guo J, Tan L, Kong L (2021) Impact of dietary intake of resistant starch on obesity and associated metabolic profiles in human: a systematic review of the literature. Crit Rev Food Sci Nutr 61(6):889–905. https://doi.org/10.1080/10408398.2020.1747391

    Article  CAS  PubMed  Google Scholar 

  35. Snelson M, Jong J, Manolas D, Kok S, Louise A, Stern R et al (2019) Metabolic effects of resistant starch type 2: a systematic literature review and meta-analysis of randomized controlled trials. Nutrients. https://doi.org/10.3390/nu11081833

    Article  PubMed  Google Scholar 

  36. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L et al (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295(5):E1160–E1166. https://doi.org/10.1152/ajpendo.90637.2008

    Article  CAS  PubMed  Google Scholar 

  37. DeMartino P, Cockburn DW (2020) Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol 61:66–71. https://doi.org/10.1016/j.copbio.2019.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Cronin P, Joyce SA, O’Toole PW, O’Connor EM (2021) Dietary fibre modulates the gut microbiota. Nutrients 13(5):1655. https://doi.org/10.3390/nu13051655

    Article  CAS  PubMed  Google Scholar 

  39. Schioldan AG, Gregersen S, Hald S, Bjornshave A, Bohl M, Hartmann B et al (2018) Effects of a diet rich in arabinoxylan and resistant starch compared with a diet rich in refined carbohydrates on postprandial metabolism and features of the metabolic syndrome. Eur J Nutr 57(2):795–807. https://doi.org/10.1007/s00394-016-1369-8

    Article  CAS  PubMed  Google Scholar 

  40. Ells LJ, Seal CJ, Kettlitz B, Bal W, Mathers JC (2005) Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. Br J Nutr 94(6):948–955. https://doi.org/10.1079/bjn20051554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks are extended to all the volunteers participating in this study.

Funding

This study was funded by the Programa de Fomento a la Investigación of the Universidad Juárez Autónoma de Tabasco (UJAT-DACS 2015-IA-09).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows—JLB-C, CG-V: contributed to the conceptualization of the manuscript; CG-V, YA-C, and GJ-D: contributed to the methodology; MCM-L, and CGG-P: contributed to the software; CG-V, and VO-H: contributed to the validation; CG-V, JLB-C, YA-C, and MR-G: contributed to the formal analysis; GJ-D, and MR-G: contributed to the investigation; JLB-C, CG-V, and CGG-P: contributed to the data curation; JLB-C, and MR-G: contributed to the writing—original draft preparation; JLB-C, CG-V, and JAH-B: contributed to the writing—review and editing. MCM-L, GJ-D, and JAH-B: contributed to the supervision. All authors have approved the final article for publication.

Corresponding author

Correspondence to Jorge L. Ble-Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethical Committee of the Instituto Mexicano del Seguro Social (Registration number 2015-2701-17, Approved on November, 2015).

Informed consent

Informed consent was obtained from all subjects involved in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Vázquez, C., Ble-Castillo, J.L., Arias-Córdova, Y. et al. Effects of resistant starch on glycemic response, postprandial lipemia and appetite in subjects with type 2 diabetes. Eur J Nutr 62, 2269–2278 (2023). https://doi.org/10.1007/s00394-023-03154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03154-4

Keywords

Navigation