Skip to main content
Log in

Chronic consumption of a blend of inulin and arabinoxylan reduces energy intake in an ad libitum meal but does not influence perceptions of appetite and satiety: a randomised control-controlled crossover trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Prebiotic foods can be used to increase production of short-chain fatty acids (SCFA) in the gut. Of the SCFA, propionate is credited with the strongest anorectic activity. In previous work, a 50/50 blend of inulin and arabinoxylan was produced (I + AX) that significantly increased propionate production in an in vitro gut model. This study sought to establish whether chronic consumption of a prebiotic blend of I + AX decreases appetite and energy intake and increases intestinal propionate production in human participants.

Methods

MIXSAT (clinicaltrials.gov id: NCT02846454, August 2016) was a double-blind randomised acute-within-chronic crossover feeding trial in healthy adult men (n = 20). Treatments were 8 g per day I + AX for 21 days or weight-matched maltodextrin control. The primary outcome measure was perceived satiety and appetite during an acute study visit. Secondary outcomes were energy intake in an ad libitum meal, faecal SCFA concentration, and faecal microbiota composition.

Results

Perceived satiety and appetite were not affected by the intervention. I + AX was associated with a reduction in energy intake in an ad libitum meal, increased faecal SCFA concentration, and an increase in cell counts of Bifidobacteria, Lactobacilli, and other microbial genera associated with health.

Implications

Chronic consumption of this blend of prebiotics decreased energy intake in a single sitting. Further studies are needed to confirm mechanism of action and to determine whether this might be useful in weight control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [SMC, DC, GRG], upon reasonable request.

References

  1. Aoun A, Darwish F, Hamod N (2020) The influence of the gut microbiome on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss. Prevent Nutr Food Sci 25:113–123. https://doi.org/10.3746/pnf.2020.25.2.113

    Article  CAS  Google Scholar 

  2. Dreher ML (2015) Role of fiber and healthy dietary patterns in body weight regulation and weight loss. Adv Obes Weight Manag Control. https://doi.org/10.15406/aowmc.2015.03.00068

    Article  Google Scholar 

  3. Yu KB, Hsiao EY (2021) Roles for the gut microbiota in regulating neuronal feeding circuits. J Clin Invest 131:e143772. https://doi.org/10.1172/JCI143772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes 7:189–200. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumar J, Rani K, Datt C (2020) Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep 47:6229–6237. https://doi.org/10.1007/s11033-020-05611-3

    Article  CAS  PubMed  Google Scholar 

  6. Gibson GR et al (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  PubMed  Google Scholar 

  7. Hobden MR et al (2021) Impact of dietary supplementation with resistant dextrin (NUTRIOSE(®)) on satiety, glycaemia, and related endpoints, in healthy adults. Eur J Nutr 60:4635–4643. https://doi.org/10.1007/s00394-021-02618-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hume MP, Nicolucci AC, Reimer RA (2017) Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr 105:790–799. https://doi.org/10.3945/ajcn.116.140947

    Article  CAS  PubMed  Google Scholar 

  9. Hiel S et al (2020) Link between gut microbiota and health outcomes in inulin -treated obese patients: lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clin Nutr 39:3618–3628. https://doi.org/10.1016/j.clnu.2020.04.005

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Julia PJ, Munoz-Munoz J, van Sinderen D (2021) A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int J Biol Macromol 181:877–889. https://doi.org/10.1016/j.ijbiomac.2021.04.069

    Article  CAS  PubMed  Google Scholar 

  11. Den Besten G et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  12. Collins SM et al (2021) Development of a prebiotic blend to influence in vitro fermentation effects, with a focus on propionate, in the gut. FEMS Microbiol Ecol 97:101. https://doi.org/10.1093/femsec/fiab101

    Article  CAS  Google Scholar 

  13. Löffler A et al (2015) Eating behaviour in the general population: an analysis of the factor structure of the German version of the three-factor-eating-questionnaire (TFEQ) and its association with the body mass index. PLoS ONE 10:e0133977. https://doi.org/10.1371/journal.pone.0133977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manzar MD et al (2015) Validity of the Pittsburgh sleep quality index in Indian university students. Oman Med J 30:193–202. https://doi.org/10.5001/omj.2015.41

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flint A et al (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24:38–48. https://doi.org/10.1038/sj.ijo.0801083

    Article  CAS  PubMed  Google Scholar 

  16. Wang X et al (2020) Prebiotics inhibit proteolysis by gut bacteria in a host diet-dependent manner: a three-stage continuous in vitro gut model experiment. Appl Environ Microbiol 86:e02730-e2819. https://doi.org/10.1128/AEM.02730-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grimaldi R et al (2016) Fermentation properties and potential prebiotic activity of Bimuno® galacto-oligosaccharide (65% galacto-oligosaccharide content) on in vitro gut microbiota parameters. Br J Nutr 116:480–486. https://doi.org/10.1017/S0007114516002269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Birkeland E et al (2020) Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr 59:3325–3338. https://doi.org/10.1007/s00394-020-02282-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walton GE et al (2012) A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr J 11:36. https://doi.org/10.1186/1475-2891-11-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lecerf JM et al (2012) Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr 108:1847–1858. https://doi.org/10.1017/s0007114511007252

    Article  CAS  PubMed  Google Scholar 

  21. Kimura I et al (2020) Free fatty acid receptors in health and disease. Physiol Rev 100:171–210. https://doi.org/10.1152/physrev.00041.2018

    Article  CAS  PubMed  Google Scholar 

  22. Frost G et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611. https://doi.org/10.1038/ncomms4611

    Article  CAS  PubMed  Google Scholar 

  23. Bodinham CL, Frost GS, Robertson MD (2010) Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr 103:917–922. https://doi.org/10.1017/S0007114509992534

    Article  CAS  PubMed  Google Scholar 

  24. Freeland KR, Anderson GH, Wolever TMS (2009) Acute effects of dietary fibre and glycaemic carbohydrate on appetite and food intake in healthy males. Appetite 52:58–64. https://doi.org/10.1016/j.appet.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  25. Keogh GF et al (2003) Randomized controlled crossover study of the effect of a highly β-glucan–enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. Am J Clin Nutr 78:711–718. https://doi.org/10.1093/ajcn/78.4.711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olli K et al (2015) Postprandial effects of polydextrose on satiety hormone responses and subjective feelings of appetite in obese participants. Nutr J 14:2. https://doi.org/10.1186/1475-2891-14-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ranawana V, Muller A, Henry CJK (2013) Polydextrose: its impact on short-term food intake and subjective feelings of satiety in males—a randomized controlled cross-over study. Eur J Nutr 52:885–893. https://doi.org/10.1007/s00394-012-0395-4

    Article  CAS  PubMed  Google Scholar 

  28. Wilke V et al (2021) Effects of increasing dietary rye levels on physicochemical characteristics of digesta and its impact on stomach emptying as well as the formation of ‘doughballs’ in stomachs of young pigs. J Anim Physiol Anim Nutr (Berl) 105(Suppl 1):19–25. https://doi.org/10.1111/jpn.13549

    Article  CAS  PubMed  Google Scholar 

  29. Russo F et al (2010) Metabolic effects of a diet with inulin-enriched pasta in healthy young volunteers. Curr Pharm Des 16:825–831. https://doi.org/10.2174/138161210790883570

    Article  CAS  PubMed  Google Scholar 

  30. Hartvigsen ML et al (2014) Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: a randomised study. Eur J Clin Nutr 68:567–574. https://doi.org/10.1038/ejcn.2014.25

    Article  CAS  PubMed  Google Scholar 

  31. Christensen L et al (2020) Microbial enterotypes beyond genus level: bacteroides species as a predictive biomarker for weight change upon controlled intervention with arabinoxylan oligosaccharides in overweight subjects. Gut Microbes 12:1847627. https://doi.org/10.1080/19490976.2020.1847627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sandberg JC, Björck IM, Nilsson AC (2016) Rye-based evening meals favorably affected glucose regulation and appetite variables at the following breakfast; a randomized controlled study in healthy subjects. PLoS ONE 11:e0151985. https://doi.org/10.1371/journal.pone.0151985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarini J, Wolever TMS (2010) The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 35:9–16. https://doi.org/10.1139/h09-119%m20130660

    Article  CAS  PubMed  Google Scholar 

  34. Liber A, Szajewska H (2013) Effects of inulin-type fructans on appetite, energy intake, and body weight in children and adults: systematic review of randomized controlled trials. Ann Nutr Metab 63:42–54. https://doi.org/10.1159/000350312

    Article  CAS  PubMed  Google Scholar 

  35. Oki K et al (2016) Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol 16:284. https://doi.org/10.1186/s12866-016-0898-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pinart M et al (2021) Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis. Nutrients. https://doi.org/10.3390/nu14010012

    Article  PubMed  PubMed Central  Google Scholar 

  37. Michael DR et al (2021) Daily supplementation with the Lab4P probiotic consortium induces significant weight loss in overweight adults. Sci Rep 11:5. https://doi.org/10.1038/s41598-020-78285-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Michael DR et al (2020) A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. Sci Rep 10:4183. https://doi.org/10.1038/s41598-020-60991-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duranti S et al (2020) Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci Rep 10:14112. https://doi.org/10.1038/s41598-020-70986-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133. https://doi.org/10.1016/j.brainres.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Donnell MP et al (2020) A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583:415–420. https://doi.org/10.1038/s41586-020-2395-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanchez M et al (2017) Effects of a diet-based weight-reducing program with probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals. Nutrients. https://doi.org/10.3390/nu9030284

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kazemi A, Noorbala AA, Djafarian K (2020) Effect of probiotic and prebiotic versus placebo on appetite in patients with major depressive disorder: post hoc analysis of a randomised clinical trial. J Hum Nutr Diet 33:56–65. https://doi.org/10.1111/jhn.12675

    Article  CAS  PubMed  Google Scholar 

  44. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  45. Bédard A et al (2015) Gender differences in the appetite response to a satiating diet. J Obes 2015:140139. https://doi.org/10.1155/2015/140139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Timper K, Brüning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10:679–689. https://doi.org/10.1242/dmm.026609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sineaid M. Collins.

Ethics declarations

Conflict of interest

This work was part funded by Herbalife Nutrition, UK. GNS and AB are employees of Herbalife Nutrition; SMC GRG, OB, GEW, and AW are employees of Reading University, DMC is a current employee of Northumbria University. GNS and AB provided logistical support, particularly around treatment product development and study blinding. They were not involved in study design or data analysis and interpretation. SMC, OBK, GRG, and DMC designed the study, and GEW and AW provided support with data analysis and interpretation. SMC and DMC prepared the manuscript, and all authors have reviewed and approved the final script. Aside from those described above, the authors report no other conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 163 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, S.M., Gibson, G.R., Stainton, G.N. et al. Chronic consumption of a blend of inulin and arabinoxylan reduces energy intake in an ad libitum meal but does not influence perceptions of appetite and satiety: a randomised control-controlled crossover trial. Eur J Nutr 62, 2205–2215 (2023). https://doi.org/10.1007/s00394-023-03136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03136-6

Keywords

Navigation