Skip to main content

Advertisement

Log in

Long-term dietary DHA intervention prevents telomere attrition and lipid disturbance in telomerase-deficient male mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Previous evidence indicated anti-ageing potential of docosahexaenoic acid (DHA), but the underlying mechanism remains unclear. We investigated protective effect of DHA on telomere attrition and lipid disturbance in male mice with premature ageing caused by telomerase deficiency.

Methods

Wild-type (WT) and fourth-generation telomerase-deficient (G4 Terc−/−, Terc knockout, KO) male mice (C57BL/6, 2 months old) were fed control diet (WT-C and KO-C groups) or DHA-enriched diet containing 0.80% DHA by weight (WT-DHA and KO-DHA groups) for 10 months. The ageing phenotypes and metabolic level [carbon dioxide emission, oxygen consumption, and respiratory exchange ratio (RER)] were assessed at the end of the experiment. Telomere length in various tissues and the hepatic gene and protein expression for regulating lipid synthesis and lipolysis were measured. Data were tested using one- or two-factor ANOVA.

Results

In KO male mice, DHA prevented weight loss, corrected high RER, and reduced fat loss. Telomere shortening was reduced by 22.3%, 25.5%, and 13.5% in heart, liver, and testes of the KO-DHA group compared with those in the KO-C group. The KO-DHA group exhibited higher gene transcription involved in glycerol-3-phosphate pathway [glycerol-3-phosphate acyltransferase (Gpat)], lower gene expression of β-oxidation [carnitine palmitoyltransferase 1a (Cpt1a)], and upregulation of proteins in lipid synthesis [mammalian target of rapamycin complex 1 (mTORC1) and sterol responsive element binding protein 1 (SREBP1)] in liver than the KO-C group.

Conclusion

Long-term DHA intervention attenuates telomere attrition and promotes lipid synthesis via the tuberous sclerosis complex 2 (TSC2)-mTORC1-SREBP1 pathway in KO male mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data in our present study can be made available after corresponding author’s review of request for data.

Abbreviations

Acaca:

Acetyl-CoA carboxylase alpha

ALA:

α-Linolenic acid

Apat:

Acyl-glycerol-phosphate acyltransferase

CAC:

Cancer-associated cachexia

Cpt1a:

Carnitine palmitoyltransferase 1A

Dgat:

Diacylglycerol acyltransferase

DHA:

Docosahexaenoic acid

Fasn:

Fatty acid synthase

G4 Terc −/− :

Fourth generation of telomerase deficient

Gpat:

Glycerol-3-phosphate acyltransferase

GSK3β:

Glycogen synthase kinase-3β

H&E:

Haematoxylin and eosin

Lcad:

Long-chain acyl-coenzyme A dehydrogenase

Mcad:

Medium-chain acyl-coenzyme A dehydrogenase

MEF:

Murine embryonic fibroblast

mTOR:

Mammalian target of rapamycin

mTORC1:

MTOR complex 1

NMR:

Nuclear magnetic resonance

PUFA:

Polyunsaturated fatty acid

Q-FISH:

Quantitative fluorescence in situ hybridization

RER:

Respiratory exchange ratio

ROS:

Reactive oxygen species

S6K1:

S6 Kinase 1

SREBP1:

Sterol responsive element binding protein 1

TG:

Triacylglycerol

TSC2:

Tuberous sclerosis complex 2

WT:

Wild type

References

  1. Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31(4):443

    Article  CAS  PubMed  Google Scholar 

  2. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350(6265):1193–1198

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara-Romeo I, Martinez P, Saraswati S, Whittemore K, Grana-Castro O, Thelma Poluha L, Serrano R, Hernandez-Encinas E, Blanco-Aparicio C, Maria Flores J, Blasco MA (2020) The mTOR pathway is necessary for survival of mice with short telomeres. Nat Commun 11(1):1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2-part-P1):405–413

    Article  CAS  PubMed  Google Scholar 

  5. Chakravarti D, LaBella KA, DePinho RA (2021) Telomeres: history, health, and hallmarks of aging. Cell 184(2):306–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Missios P, Zhou Y, Guachalla LM, von Figura G, Wegner A, Chakkarappan SR, Binz T, Gompf A, Hartleben G, Burkhalter MD, Wulff V, Gunes C, Sattler RW, Song Z, Illig T, Klaus S, Bohm BO, Wenz T, Hiller K, Rudolph KL (2014) Glucose substitution prolongs maintenance of energy homeostasis and lifespan of telomere dysfunctional mice. Nat Commun 5:4924

    Article  CAS  PubMed  Google Scholar 

  7. Liu R, Chen L, Wang Y, Zhang G, Cheng Y, Feng Z, Bai X, Liu J (2020) High ratio of omega-3/omega-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. J Nutr Biochem 79:108330

    Article  CAS  PubMed  Google Scholar 

  8. Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I (2015) mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14(4):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, Gandin V, Avizonis D, Arguello M, Zakaria C, McLaughlan S, Nouet Y, Pause A, Pollak M, Gottlieb E, Larsson O, St-Pierre J, Topisirovic I, Sonenberg N (2013) mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 18(5):698–711

    Article  CAS  PubMed  Google Scholar 

  10. Laplante M, Sabatini DM (2013) Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126(Pt 8):1713–1719

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao D, Yang J, Yang L (2017) Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev 2017:6437467

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han J, Wang Y (2018) mTORC1 signaling in hepatic lipid metabolism. Protein Cell 9(2):145–151

    Article  CAS  PubMed  Google Scholar 

  13. Takeuchi H, Sekine S, Noguchi O, Murano Y, Aoyama T, Matsuo T (2009) Effect of life-long dietary n-6/n-3 fatty acid ratio on life span, serum lipids and serum glucose in Wistar rats. J Nutr Sci Vitaminol 55(5):394–399

    Article  CAS  PubMed  Google Scholar 

  14. Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ogłuszka M, Lipiński P, Starzyński RR (2022) Effect of omega-3 fatty acids on telomeres-are they the elixir of youth? Nutrients 14(18):3723

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Wei Y, Chen X, Jiao J, Zhang Y (2017) Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget 8(5):7301–7314

    Article  PubMed  Google Scholar 

  17. Varela-Lopez A, Pérez-López MP, Ramirez-Tortosa CL, Battino M, Granados-Principal S, Ramirez-Tortosa MDC, Ochoa JJ, Vera-Ramirez L, Giampieri F, Quiles JL (2018) Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. J Nutr Biochem 52:36–44

    Article  CAS  PubMed  Google Scholar 

  18. Gao J, Xiao H, Li J, Guo X, Cai W, Li D (2019) N-3 polyunsaturated fatty acids decrease long-term diabetic risk of offspring of gestational diabetes rats by postponing shortening of hepatic telomeres and modulating liver metabolism. Nutrients 11(7):1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jx A, Yg A, Xh A, Xm A, Pl A, Ying WB, Xw A, Ly A (2021) Effects of DHA dietary intervention on hepatic lipid metabolism in apolipoprotein E-deficient and C57BL/6J wild-type mice. Biomed Pharmacother 144:112329

    Article  Google Scholar 

  20. Madaan A, Verma R, Singh AT, Jain SK, Jaggi M (2014) A stepwise procedure for isolation of murine bone marrow and generation of dendritic cells. Ethology 1(1):68–83

    Google Scholar 

  21. Eder K (1995) Gas chromatographic analysis of fatty acid methyl esters. J Chromatogr B Biomed Sci Appl 671(1):113–131

    Article  CAS  Google Scholar 

  22. Xu J (2005) Preparation, culture, and immortalization of mouse embryonic fibroblasts. Curr Protoc Mol Biol 70(1):1–28

    Article  Google Scholar 

  23. Kapoor V, Telford WG (2004) Telomere length measurement by fluorescence in situ hybridization and flow cytometry. In: Flow cytometry protocols. Springer, pp 385–398

  24. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30(10):e47

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc 2008(5):pdb.prot4986

    Article  Google Scholar 

  26. Dennis-Sykes CA, Miller WJ, McAleer WJ (1985) A quantitative Western Blot method for protein measurement. J Biol Stand 13(4):309–314

    Article  CAS  PubMed  Google Scholar 

  27. Bloomer RJ, Larson DE, Fisherwellman KH, Galpin AJ, Schilling BK (2009) Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids Health Dis 8(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dawczynski C, Martin L, Wagner A, Jahreis G (2010) n-3 LC-PUFA-enriched dairy products are able to reduce cardiovascular risk factors: a double-blind, cross-over study. Clin Nutr 29(5):592–599

    Article  CAS  PubMed  Google Scholar 

  29. Tully AM, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, Coakley D, Gibney MJ (2003) Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case-control study. Br J Nutr 89(4):483–489

    Article  CAS  PubMed  Google Scholar 

  30. Yamagata K, Suzuki S, Tagami M (2016) Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence. Prostaglandins Leukot Essent Fatty Acids 104:11–18

    Article  CAS  PubMed  Google Scholar 

  31. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA (2010) Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 303(3):250–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Liu X, Shi Q, Fan X, Qi K (2021) Association of telomere length and telomerase methylation with n-3 fatty acids in preschool children with obesity. BMC Pediatr. https://doi.org/10.1186/s12887-020-02487-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chang X, Dorajoo R, Sun Y, Wang L, Heng CK (2020) Effect of plasma polyunsaturated fatty acid levels on leukocyte telomere lengths in the Singaporean Chinese population. Nutr J 19(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guazzi M (2010) Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122(2):191

    Article  PubMed  Google Scholar 

  35. Dervishi E, Serrano C, Joy M, Serrano M, Rodellar C, Calvo JH (2011) The effect of feeding system in the expression of genes related with fat metabolism in semitendinous muscle in sheep. Meat Sci 89(1):91–97

    Article  CAS  PubMed  Google Scholar 

  36. Schlaepfer IR, Joshi M (2020) CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. https://doi.org/10.1210/endocr/bqz046

    Article  PubMed  Google Scholar 

  37. Peterson T, Sengupta S, Harris T, Carmack A, Kang S, Balderas E, Guertin D, Madden K, Carpenter A, Finck B (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhuang P, Lu Y, Shou Q, Mao L, He L, Wang J, Chen J, Zhang Y, Jiao J (2019) Differential anti-adipogenic effects of eicosapentaenoic and docosahexaenoic acids in obesity. Mol Nutr Food Res 63(14):e1801135

    Article  PubMed  Google Scholar 

  41. Iizuka Y, Kim H, Nakasatomi M, Izawa T, Hirako S, Matsumoto A (2016) Fish oil prevents excessive accumulation of subcutaneous fat caused by an adverse effect of pioglitazone treatment and positively changes adipocytes in KK mice. Toxicol Rep 3:4–14

    Article  CAS  PubMed  Google Scholar 

  42. Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P, Franssen-van Hal N, Ruzickova J, Sponarova J, Drahota Z, Vlcek C, Keijer J, Houstek J, Kopecky J (2005) Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia 48(11):2365–2375

    Article  CAS  PubMed  Google Scholar 

  43. Zhang TT, Xu J, Wang YM, Xue CH (2019) Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 75:100997

    Article  CAS  PubMed  Google Scholar 

  44. Yang YH, Hao YM, Liu XF, Gao X, Wang BZ, Takahashi K, Du L (2021) Docosahexaenoic acid-enriched phospholipids and eicosapentaenoic acid-enriched phospholipids inhibit tumor necrosis factor-alpha-induced lipolysis in 3T3-L1 adipocytes by activating sirtuin 1 pathways. Food Funct 12(11):4783–4796

    Article  CAS  PubMed  Google Scholar 

  45. Zhu X, Shen W, Yao K, Wang H, Ju Z (2019) Fine-tuning of PGC1α expression regulates cardiac function and longevity. Circ Res 125(7):707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo MR, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao RL, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1(1):40–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18C200001).

Author information

Authors and Affiliations

Authors

Contributions

JNC, YZ and JJJ designed the research; JNC, SYW and YQW conducted the experimental work and data acquisition; JNC and SYW analyzed data; JNC and SYW wrote the manuscript; PZ, YZ and JJJ contributed to the review and editing; JJJ had primary responsibility for final content. All authors have approved the final version of the article.

Corresponding authors

Correspondence to Yu Zhang or Jingjing Jiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1800 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wu, S., Wu, Y. et al. Long-term dietary DHA intervention prevents telomere attrition and lipid disturbance in telomerase-deficient male mice. Eur J Nutr 62, 1867–1878 (2023). https://doi.org/10.1007/s00394-023-03120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03120-0

Keywords

Navigation