Skip to main content

Advertisement

Log in

Ex vivo LPS-stimulated cytokine production is associated with hydration status in community-dwelling middle-to-older-aged adults

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Suboptimal hydration has been linked to a variety of adverse health outcomes. Few studies have examined the impact of hydration status on immune function, a plausible physiological mechanism underlying these associations. Therefore, we tested how variation in hydration status was associated with circulating pro-inflammatory cytokine levels and ex vivo lipopolysaccharide (LPS)-stimulated pro-inflammatory cytokine production.

Methods

Blood samples were obtained from a community sample of healthy middle-to-older-aged adults (N = 72). These samples were used to assess serum osmolality, a biomarker of hydration status, and markers of immune function including circulating pro-inflammatory cytokines and stimulated pro-inflammatory cytokine production after 4 and 24 h of incubation with LPS. Multiple linear regressions were used to test the association between serum osmolality (as a continuous variable) and markers of immune function at baseline and after 4 and 24 h adjusting for age, sex, and BMI. These models were re-estimated with serum osmolality dichotomized at the cut-off for dehydration (> 300 mOsm/kg).

Results

While not significantly associated with circulating cytokines (B = − 0.03, p = 0.09), serum osmolality was negatively associated with both 4 h (B = − 0.05, p = 0.048) and 24 h (B = − 0.05, p = 0.03) stimulated cytokine production when controlling for age, sex, and BMI. Similarly, dehydration was associated with significantly lower cytokine production at both 4 h (B = − 0.54, p = 0.02) and 24 h (B = − 0.51, p = 0.02) compared to adequate hydration.

Conclusion

These findings suggest that dehydration may be associated with suppressed immune function in generally healthy middle-to-older aged community-dwelling adults. Further longitudinal research is needed to more clearly define the role of hydration in immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data described in the manuscript, code book, and analytic code will be made available upon request pending application and IRB approval.

References

  1. Perrier ET, Armstrong LE, Bottin JH et al (2021) Hydration for health hypothesis: a narrative review of supporting evidence. Eur J Nutr 60:1167–1180. https://doi.org/10.1007/s00394-020-02296-z

    Article  PubMed  Google Scholar 

  2. Perrier ET (2017) Shifting focus: from hydration for performance to hydration for health. Ann Nutr Metab 70:4–12. https://doi.org/10.1159/000462996

    Article  PubMed  Google Scholar 

  3. Lacey J, Corbett J, Forni L et al (2019) A multidisciplinary consensus on dehydration: definitions, diagnostic methods and clinical implications. Ann Med 51:232–251. https://doi.org/10.1080/07853890.2019.1628352

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stookey JD, Kavouras SA, Suh H, Lang F (2020) Underhydration is associated with obesity, chronic diseases, and death within 3–6 years in the US population aged 51–70 years. Nutrients 12:905. https://doi.org/10.3390/nu12040905

    Article  PubMed  PubMed Central  Google Scholar 

  5. Faraco G, Wijasa TS, Park L et al (2014) Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. J Cereb Blood Flow Metab 34:852–860. https://doi.org/10.1038/jcbfm.2014.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stachenfeld NS, Leone CA, Mitchell ES et al (2018) Water intake reverses dehydration associated impaired executive function in healthy young women. Physiol Behav 185:103–111. https://doi.org/10.1016/j.physbeh.2017.12.028

    Article  CAS  PubMed  Google Scholar 

  7. Benton D, Jenkins KT, Watkins HT, Young HA (2016) Minor degree of hypohydration adversely influences cognition: a mediator analysis. Am J Clin Nutr 104:603–612. https://doi.org/10.3945/ajcn.116.132605

    Article  CAS  PubMed  Google Scholar 

  8. Bethancourt HJ, Kenney WL, Almeida DM, Rosinger AY (2020) Cognitive performance in relation to hydration status and water intake among older adults, NHANES 2011–2014. Eur J Nutr 59:3133–3148. https://doi.org/10.1007/s00394-019-02152-9

    Article  PubMed  Google Scholar 

  9. Laitano O, Kalsi KK, Pearson J et al (2012) Effects of graded exercise-induced dehydration and rehydration on circulatory markers of oxidative stress across the resting and exercising human leg. Eur J Appl Physiol 112:1937–1944. https://doi.org/10.1007/s00421-011-2170-2

    Article  CAS  PubMed  Google Scholar 

  10. González-Alonso J, Mora-Rodríguez R, Below PR, Coyle EF (1997) Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol 82:1229–1236. https://doi.org/10.1152/jappl.1997.82.4.1229

    Article  PubMed  Google Scholar 

  11. Watso JC, Farquhar WB (2019) Hydration status and cardiovascular function. Nutrients. https://doi.org/10.3390/nu11081866

    Article  PubMed  PubMed Central  Google Scholar 

  12. Manz F (2007) Hydration and disease. J Am Coll Nutr 26:535S-541S. https://doi.org/10.1080/07315724.2007.10719655

    Article  PubMed  Google Scholar 

  13. Jacques PF, Rogers G, Stookey JD, Perrier ET (2021) Water intake and markers of hydration are related to cardiometabolic risk biomarkers in community-dwelling older adults: a cross-sectional analysis. J Nutr 151:3205–3213. https://doi.org/10.1093/jn/nxab233

    Article  PubMed  PubMed Central  Google Scholar 

  14. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA

    Article  CAS  PubMed  Google Scholar 

  15. Malhotra B, Deka D (2002) Effect of maternal oral hydration on amniotic fluid index in women with pregnancy-induced hypertension. J Obstet Gynaecol Res 28:194–198. https://doi.org/10.1046/j.1341-8076.2002.00030.x

    Article  PubMed  Google Scholar 

  16. Hofmeyr G, Gülmezoglu A, Novikova N (2002) Maternal hydration for increasing amniotic fluid volume in oligohydramnios and normal amniotic fluid volume. Cochrane Database Syst Rev. https://doi.org/10.33762/bsurg.2007.56737

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stan CM, Boulvain M, Pfister R, Hirsbrunner-Almagbaly P (2013) Hydration for treatment of preterm labour. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003096.pub2

    Article  PubMed  Google Scholar 

  18. Garite TJ, Weeks J, Peters-Phair K et al (2000) A randomized controlled trial of the effect of increased intravenous hydration on the course of labor in nulliparous women. Am J Obstet Gynecol 183:1544–1548. https://doi.org/10.1067/mob.2000.107884

    Article  CAS  PubMed  Google Scholar 

  19. Borghi L, Meschi T, Amato F et al (1996) Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol 155:839–843. https://doi.org/10.1016/S0022-5347(01)66321-3

    Article  CAS  PubMed  Google Scholar 

  20. Beetz R (2003) Mild dehydration: a risk factor of urinary tract infection? Eur J Clin Nutr 57:S52–S58. https://doi.org/10.1038/sj.ejcn.1601902

    Article  PubMed  Google Scholar 

  21. Stookey JD (2019) Analysis of 2009–2012 nutrition health and examination survey (NHANES) data to estimate the median water intake associated with meeting hydration criteria for individuals aged 12–80 in the US population. Nutrients 11:1–44. https://doi.org/10.3390/nu11030657

    Article  CAS  Google Scholar 

  22. Kiecolt-Glaser JK, Derry HM, Fagundes CP (2015) Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry 172:1075–1091. https://doi.org/10.1176/appi.ajp.2015.15020152

    Article  PubMed  PubMed Central  Google Scholar 

  23. Manabe I (2011) Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ J 75:2739–2748. https://doi.org/10.1253/circj.CJ-11-1184

    Article  CAS  PubMed  Google Scholar 

  24. Prasad S, Sung B, Aggarwal BB (2012) Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med (Baltim) 54:S29–S37. https://doi.org/10.1016/j.ypmed.2011.11.011

    Article  CAS  Google Scholar 

  25. Zhou X, Fragala MS, McElhaney JE, Kuchel GA (2010) Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metab Care 13:541–547. https://doi.org/10.1097/MCO.0b013e32833cf3bc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleiner G, Marcuzzi A, Zanin V et al (2013) Cytokine levels in the serum of healthy subjects. Med Inflamm. https://doi.org/10.1155/2013/434010

    Article  Google Scholar 

  27. De Jong LAA, Uges DRA, Franke JP, Bischoff R (2005) Receptor-ligand binding assays: technologies and applications. J Chromatogr B Anal Technol Biomed Life Sci 829:1–25. https://doi.org/10.1016/j.jchromb.2005.10.002

    Article  CAS  Google Scholar 

  28. Rossol M, Heine H, Meusch U et al (2011) LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 31:379–446. https://doi.org/10.1615/critrevimmunol.v31.i5.20

    Article  CAS  PubMed  Google Scholar 

  29. Medzhitov R, Janeway CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science. https://doi.org/10.1126/science.1068883

    Article  PubMed  Google Scholar 

  30. Kong XN, Yan HX, Chen L et al (2007) LPS-induced down-regulation of signal regulatory protein α contributes to innate immune activation in macrophages. J Exp Med 204:2719–2731. https://doi.org/10.1084/jem.20062611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis KM, Engeland CG, Murdock KW (2020) Ex vivo LPS-stimulated cytokine production is associated with cortisol curves in response to acute psychosocial stress. Psychoneuroendocrinology 121:104863. https://doi.org/10.1016/j.psyneuen.2020.104863

    Article  CAS  PubMed  Google Scholar 

  32. DeBoer MD (2013) Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: a need for screening tools to target interventions. Nutrition 29:379–386

    Article  PubMed  Google Scholar 

  33. Tracy RP (2003) Emerging relationships of inflammation, cardiovascular disease and chronic diseases of aging. Int J Obes 27:S29–S34. https://doi.org/10.1038/sj.ijo.0802497

    Article  Google Scholar 

  34. Moore KJ (2019) Targeting inflammation in CVD: advances and challenges. Nat Rev Cardiol 16:74–75. https://doi.org/10.1038/s41569-018-0144-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Larrañaga CL, Ampuero SL, Luchsinger VF et al (2009) Impaired immune response in severe human lower tract respiratory infection by respiratory syncytial virus. Pediatr Infect Dis J 28:867–873. https://doi.org/10.1097/INF.0b013e3181a3ea71

    Article  PubMed  Google Scholar 

  36. Luebke RW, Parks C, Luster MI (2004) Suppression of immune function and susceptibility to infections in humans: association of immune function with clinical disease. J Immunotoxicol 1:15–24. https://doi.org/10.1080/15476910490438342

    Article  PubMed  Google Scholar 

  37. Roca Rubio MF, Eriksson U, Brummer RJ, König J (2021) Sauna dehydration as a new physiological challenge model for intestinal barrier function. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-94814-0

    Article  CAS  Google Scholar 

  38. Mitchell JB, Dugas JP, McFarlin BK, Nelson MJ (2002) Effect of exercise, heat stress, and hydration on immune cell number and function. Med Sci Sports Exerc 34:1941–1950. https://doi.org/10.1097/00005768-200212000-00013

    Article  CAS  PubMed  Google Scholar 

  39. Costa RJS, Camões-Costa V, Snipe RMJ et al (2019) Impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J Appl Physiol 126:1281–1291. https://doi.org/10.1152/japplphysiol.01032.2018

    Article  CAS  PubMed  Google Scholar 

  40. Roberts L, Suzuki K (2019) Exercise and inflammation. Antioxidants 8:376–377. https://doi.org/10.3390/antiox8060155

    Article  CAS  Google Scholar 

  41. Metsios GS, Moe RH, Kitas GD (2020) Exercise and inflammation. Best Pract Res Clin Rheumatol 34:101504. https://doi.org/10.1016/j.berh.2020.101504

    Article  PubMed  Google Scholar 

  42. Febbraio MA (2007) Exercise and inflammation. J Appl Physiol 103:376–377. https://doi.org/10.1152/japplphysiol.00414.2007

    Article  CAS  PubMed  Google Scholar 

  43. Laukkanen JA, Laukkanen T (2018) Sauna bathing and systemic inflammation. Eur J Epidemiol 33:351–353. https://doi.org/10.1007/s10654-017-0335-y

    Article  PubMed  Google Scholar 

  44. Ohira Y, Girandola RN, Simpson DR, Ikawa S (1981) Responses of leukocytes and other hematologic parameters to thermal dehydration. J Appl Physiol Respir Environ Exerc Physiol 50:38–40. https://doi.org/10.1152/jappl.1981.50.1.38

    Article  CAS  PubMed  Google Scholar 

  45. Pilch W, Pokora I, Szygulła Z et al (2013) Effect of a single finnish sauna session on white blood cell profile and cortisol levels in athletes and non-athletes. J Hum Kinet 39:127–135. https://doi.org/10.2478/hukin-2013-0075

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zellner M, Hergovics N, Roth E et al (2002) Human monocyte stimulation by experimental whole body hyperthermia. Wien Klin Wochenschr 114:102–107. https://doi.org/10.1111/j.1749-6632.1998.tb08325.x

    Article  CAS  PubMed  Google Scholar 

  47. Chao CC, Jensen R, Dailey MO (1997) Mechanisms of L-selectin regulation by activated T cells. J Immunol 159:1686–1694

    Article  CAS  PubMed  Google Scholar 

  48. Rainer TH (2002) L-selectin in health and disease. Resuscitation 52:127–141. https://doi.org/10.1016/S0300-9572(01)00444-0

    Article  CAS  PubMed  Google Scholar 

  49. Ivetic A, Green HLH, Hart SJ (2019) L-selectin: a major regulator of leukocyte adhesion, migration and signaling. Front Immunol 10:1–22. https://doi.org/10.3389/fimmu.2019.01068

    Article  CAS  Google Scholar 

  50. Svendsen IS, Killer SC, Gleeson M (2014) Influence of hydration status on changes in plasma cortisol, leukocytes, and antigen-stimulated cytokine production by whole blood culture following prolonged exercise. ISRN Nutr 2014:1–10. https://doi.org/10.1155/2014/561401

    Article  CAS  Google Scholar 

  51. Chishaki T, Umeda T, Takahashi I et al (2013) Effects of dehydration on immune functions after a judo practice session. Luminescence 28:114–120. https://doi.org/10.1002/BIO.2349

    Article  CAS  PubMed  Google Scholar 

  52. Allen MD, Springer DA, Burg MB et al (2019) Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight 4:1–17. https://doi.org/10.1172/jci.insight.130949

    Article  CAS  Google Scholar 

  53. Buford TW, Willoughby DS (2008) Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab 33:429–433. https://doi.org/10.1139/H08-013

    Article  CAS  PubMed  Google Scholar 

  54. Besedovsky HO, Del Rey A (2000) The cytokine-HPA axis feed-back circuit. Z Rheumatol. https://doi.org/10.1007/s003930070014

    Article  PubMed  Google Scholar 

  55. Herieka M, Erridge C (2014) High-fat meal induced postprandial inflammation. Mol Nutr Food Res 58:136–146. https://doi.org/10.1002/mnfr.201300104

    Article  CAS  PubMed  Google Scholar 

  56. Lovallo WR, Whitsett TL, Al’Absi M et al (2005) Caffeine stimulation of cortisol secretion across the waking hours in relation to caffeine intake levels. Psychosom Med 67:734. https://doi.org/10.1097/01.psy.0000181270.20036.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flower L, Ahuja RH, Humphries SE, Mohamed-Ali V (2000) Effects of sample handling on the stability of interleukin 6, tumour necrosis factor-α and leptin. Cytokine 12:1712–1716. https://doi.org/10.1006/cyto.2000.0764

    Article  CAS  PubMed  Google Scholar 

  58. Najem O, Shah MM, De Jesus O (2022) Serum osmolality. StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  59. Wutich A, Rosinger AY, Stoler J et al (2020) Measuring human water needs. Am J Hum Biol 32:1–17. https://doi.org/10.1002/ajhb.23350

    Article  Google Scholar 

  60. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  61. Kowarik A, Templ M (2016) Imputation with the R Package {VIM}. J Stat Softw 74:1–16. https://doi.org/10.18637/jss.v074.i07

    Article  Google Scholar 

  62. Fagundes CP, Brown RL, Chen MA et al (2019) Grief, depressive symptoms, and inflammation in the spousally bereaved. Psychoneuroendocrinology 100:190–197. https://doi.org/10.1016/j.psyneuen.2018.10.006

    Article  PubMed  Google Scholar 

  63. Houser MC, Mac V, Smith DJ et al (2021) Inflammation-related factors identified as biomarkers of dehydration and subsequent acute kidney injury in agricultural workers. Biol Res Nurs 23:676–688. https://doi.org/10.1177/10998004211016070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cowley AW Jr (1988) Vasopressin and blood pressure regulation. Clin Physiol Biochem 6:150–162

    CAS  PubMed  Google Scholar 

  65. Robertson GL (1984) Abnormalities of thirst regulation. Kidney Int 25:460–469. https://doi.org/10.1038/ki.1984.39

    Article  CAS  PubMed  Google Scholar 

  66. Gibbs DM (1986) Vasopressin and oxytocin: hypothalamic modulators of the stress response: a review. Psychoneuroendocrinology 11:131–139. https://doi.org/10.1016/0306-4530(86)90048-X

    Article  CAS  PubMed  Google Scholar 

  67. Chikanza IC, Grossman AS (1998) Hypothalamic-pituitary-mediated immunomodulation: arginine vasopressin is a neuroendocrine immune mediator. Br J Rheumatol 37:131–136. https://doi.org/10.1093/rheumatology/37.2.131

    Article  CAS  PubMed  Google Scholar 

  68. Smith SM, Vale WW (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8:383–395. https://doi.org/10.31887/dcns.2006.8.4/ssmith

    Article  PubMed  PubMed Central  Google Scholar 

  69. Costello JT, Rendell RA, Furber M et al (2018) Effects of acute or chronic heat exposure, exercise and dehydration on plasma cortisol, IL-6 and CRP levels in trained males. Cytokine 110:277–283. https://doi.org/10.1016/j.cyto.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  70. Castro-Sepulveda M, Ramirez-Campillo R, Abad-Colil F et al (2018) Basal mild dehydration increase salivary cortisol after a friendly match in young elite soccer players. Front Physiol 9:1–5. https://doi.org/10.3389/fphys.2018.01347

    Article  Google Scholar 

  71. Marx J (1995) How the glucocorticoids suppress immunity. Science. https://doi.org/10.1126/science.270.5234.232

    Article  PubMed  Google Scholar 

  72. Auphan N, Didonato JA, Rosette C, Helmberg A (1995) Immunosuppression by glucocorticoids: inhibition of NF-κB activity through induction of IκB synthesis. Science. https://doi.org/10.1126/science.270.5234.286

    Article  PubMed  Google Scholar 

  73. Chow JC, Young DW, Golenbock DT et al (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692. https://doi.org/10.1074/jbc.274.16.10689

    Article  CAS  PubMed  Google Scholar 

  74. Prather AA, Marsland AL, Hall M et al (2009) Normative variation in self-reported sleep quality and sleep debt is associated with stimulated pro-inflammatory cytokine production. Biol Psychol 82:12–17. https://doi.org/10.1016/j.biopsycho.2009.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vogelzangs N, de Jonge P, Smit JH et al (2016) Cytokine production capacity in depression and anxiety. Transl Psychiatry 6:e825. https://doi.org/10.1038/tp.2016.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mentes JC, Gaspar PM (2020) Hydration management. J Gerontol Nurs 46:19–30. https://doi.org/10.3928/00989134-20200108-03

    Article  PubMed  Google Scholar 

  77. Gao XX, Lu C, Xie F et al (2020) Risk factors for sepsis in patients with struvite stones following percutaneous nephrolithotomy. World J Urol 38:219–229. https://doi.org/10.1007/s00345-019-02748-0

    Article  CAS  PubMed  Google Scholar 

  78. El-Sharkawy AM, Sahota O, Maughan RJ, Lobo DN (2014) The pathophysiology of fluid and electrolyte balance in the older adult surgical patient. Clin Nutr 33:6–13. https://doi.org/10.1016/j.clnu.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  79. El-Sharkawy AM, Watson P, Neal KR et al (2015) Hydration and outcome in older patients admitted to hospital (The HOOP prospective cohort study). Age Ageing 44:943–947. https://doi.org/10.1093/ageing/afv119

    Article  PubMed  PubMed Central  Google Scholar 

  80. Edmonds CJ, Foglia E, Booth P et al (2021) Dehydration in older people: a systematic review of the effects of dehydration on health outcomes, healthcare costs and cognitive performance. Arch Gerontol Geriatr 95:104380. https://doi.org/10.1016/j.archger.2021.104380

    Article  PubMed  Google Scholar 

  81. Chan HY, Cheng A, Cheung SS, Pang WW, Ma WY, Mok LC, Lee DT, Chan HYL, Cheng A et al (2018) Association between dehydration on admission and postoperative complications in older persons undergoing orthopaedic surgery. J Clin Nurs 27:3679–3686. https://doi.org/10.1111/jocn.14336

    Article  PubMed  Google Scholar 

  82. Warren JL, Bacon WE, Haris T et al (1991) The burden and outcomes associated with dehydration among US elderly, 1991. Am J Public Health 84:1265–1269. https://doi.org/10.2105/ajph.84.8.1265

    Article  Google Scholar 

  83. Martín S, Pérez A, Aldecoa C (2017) Sepsis and immunosenescence in the elderly patient: a review. Front Med. https://doi.org/10.3389/fmed.2017.00020

    Article  Google Scholar 

  84. Rosinger A, Herrick K (2016) Daily Water Intake Among US Men and Women, 2009–2012. NCHS Data Brief 1–8

  85. Weinberg AD, Minaker KL, Coble YD et al (1995) Dehydration: evaluation and management in older adults. JAMA–J Am Med Assoc 274:1552–1556. https://doi.org/10.1001/jama.274.19.1552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Jason John for his work in running the serum osmolality assay.

Funding

This work was supported by the Ann Atherton Hertzler Early Career Professorship funds and Penn State’s Population Research Institute (NICHD P2CHD041025; Rosinger). The funders had no role in the research or interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle W Murdock.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, K.M., Rosinger, A.Y. & Murdock, K.W. Ex vivo LPS-stimulated cytokine production is associated with hydration status in community-dwelling middle-to-older-aged adults. Eur J Nutr 62, 1681–1690 (2023). https://doi.org/10.1007/s00394-023-03105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03105-z

Keywords

Navigation