Skip to main content
Log in

Impact of Antarctic krill oil supplementation on skeletal muscle injury recovery after resistance exercise

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Antarctic krill oil (KO) is a natural source of n-3 polyunsaturated fatty acids (n-3 PUFAs), and is rich in phospholipids, Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), astaxanthin, flavonoids, vitamins, trace elements, and other bioactive substances. KO has been confirmed to have anti-inflammatory and immunomodulatory effects. n-3 PUFAs also have been purported to improve the recovery of muscular performance. Moreover, the phospholipids present in KO can enhance n-3 PUFA bioavailability because of its higher absorption rate in plasma compared to fish oil. Astaxanthin, found in Antarctic KO, is a red carotenoid and powerful antioxidant that inhibits oxidative stress after intense exercise. Hence, we examined the effect of KO supplementation on the recovery of exercise by measuring muscular performance, oxidant/antioxidant and anti-inflammatory activity, and the markers of muscle damage following a rigorous bout of resistance exercise.

Methods

30 college-aged resistance-trained males (20.4 ± 0.92 years, 74.09 ± 7.23 kg, 180.13 ± 4.72 cm) were randomly supplemented with 3 g/d KO or placebo (PL) for 3 days and continued to consume after resistance exercise for 3 days until the experiment finished. Before supplementation, pre-exercise performance assessments of knee isokinetic strength, 20 m sprint, hexagon test, and blood serum creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were completed. Then after 3 days of supplementation, participants completed a bout of muscle-damaging exercise, and subsequently, they performed and repeated the exercise performance assessments and blood-related indicators tests immediately (0 h), as well as at 6, 24, 48, and 72 h post-muscle-damaging exercise.

Results

Compared to the PL group, the serum CK of KO group was significantly lower at 24 h and 48 h post-exercise; the hexagon test time of the KO group was significantly lower than that of the PL group at 6 h and 24 h post-exercise; the KO group’s isokinetic muscle strength showed different degrees of recovery than that of the PL group at 24 h and 48 h, and even over-recovery at 72 h post-exercise; the SOD level of the KO group was significantly higher than that of the PL group at 0, 6, and 24 h after exercise; the T-AOC level of the KO group was significantly higher than that of the PL group at 0, 6, and 72 h after exercise; the MDA level of the KO group was significantly lower than that of the PL group at 6 h; and there was no significant difference in serum IL-2, IL-6, and TNF-α between the two groups.

Conclusion

Our results demonstrated that 3 g/d KO supplementation and continued supplementation after exercise can alleviate exercise-induced muscle damage (EIMD) and promote post-exercise recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jayathilake AG, Kadife E, Luwor RB, Nurgali K, Su XQ (2019) Krill oil extract suppresses the proliferation of colorectal cancer cells through activation of caspase 3/9. Nutr Metab (Lond) 16:53. https://doi.org/10.1186/s12986-019-0382-3

    Article  CAS  PubMed  Google Scholar 

  2. van der Wurff IS, von Schacky C, Berge K, Kirschner PA, de Groot RH (2016) A protocol for a randomised controlled trial investigating the effect of increasing Omega-3 index with krill oil supplementation on learning, cognition, behaviour and visual processing in typically developing adolescents. BMJ Open 6(7):e011790. https://doi.org/10.1136/bmjopen-2016-011790

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang G, Lee J, Lee S, Kwak D, Choe W, Kang I, Kim SS, Ha J (2016) Krill oil supplementation improves dyslipidemia and lowers body weight in mice fed a high-fat diet through activation of amp-activated protein kinase. J Med Food 19(12):1120–1129. https://doi.org/10.1089/jmf.2016.3720

    Article  CAS  PubMed  Google Scholar 

  4. Sung HH, Sinclair AJ, Huynh K, Smith AT, Mellett NA, Meikle PJ, Su XQ (2019) Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: a randomized crossover study. Nutrition 65:191–201. https://doi.org/10.1016/j.nut.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  5. Dai Y, Zhang L, Yan Z, Li Z, Fu M, Xue C, Wang J (2021) A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill (Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice. Food Funct 12(15):6766–6779. https://doi.org/10.1039/d1fo00056j

    Article  CAS  PubMed  Google Scholar 

  6. Liu F, Smith AD, Solano-Aguilar G, Wang TTY, Pham Q, Beshah E, Tang Q, Urban JF Jr, Xue C, Li RW (2020) Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models. Microbiome 8(1):83. https://doi.org/10.1186/s40168-020-00843-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou L, Wu X, Yang F, Zhang M, Huang R, Liu J (2021) Characterization of molecular species and anti-inflammatory activity of purified phospholipids from Antarctic krill oil. Mar Drugs. https://doi.org/10.3390/md19030124

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suzuki Y, Fukushima M, Sakuraba K, Sawaki K, Sekigawa K (2016) Krill oil improves mild knee joint pain: a randomized control trial. PLoS ONE 11(10):e0162769. https://doi.org/10.1371/journal.pone.0162769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laslett LL, Antony B, Wluka AE, Hill C, March L, Keen HI, Otahal P, Cicuttini FM, Jones G (2020) KARAOKE: Krill oil versus placebo in the treatment of knee osteoarthritis: protocol for a randomised controlled trial. Trials 21(1):79. https://doi.org/10.1186/s13063-019-3915-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rundblad A, Holven KB, Bruheim I, Myhrstad MC, Ulven SM (2018) Effects of fish and krill oil on gene expression in peripheral blood mononuclear cells and circulating markers of inflammation: a randomised controlled trial. J Nutr Sci 7:e10. https://doi.org/10.1017/jns.2018.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seto Y, Morizane C, Ueno K, Sato H, Onoue S (2018) Supersaturable self-emulsifying drug delivery system of krill oil with improved oral absorption and hypotriglyceridemic function. J Agric Food Chem 66(21):5352–5358. https://doi.org/10.1021/acs.jafc.8b00693

    Article  CAS  PubMed  Google Scholar 

  12. Konagai C, Yanagimoto K, Hayamizu K, Han L, Tsuji T, Koga Y (2013) Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clin Interv Aging 8:1247–1257. https://doi.org/10.2147/CIA.S50349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colletti A, Cravotto G, Citi V, Martelli A, Testai L, Cicero AFG (2021) Advances in technologies for highly active omega-3 fatty acids from krill oil: clinical applications. Mar Drugs. https://doi.org/10.3390/md19060306

    Article  PubMed  PubMed Central  Google Scholar 

  14. Murru E, Banni S, Carta G (2013) Nutritional properties of dietary omega-3-enriched phospholipids. Biomed Res Int 2013:965417. https://doi.org/10.1155/2013/965417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA (2019) Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. https://doi.org/10.3390/nu11010089

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Shen Q (2020) Electric soldering iron ionization mass spectrometry based lipidomics for in situ monitoring fish oil oxidation characteristics during storage. J Agric Food Chem 68(7):2240–2248. https://doi.org/10.1021/acs.jafc.9b06406

    Article  CAS  PubMed  Google Scholar 

  17. Ulven SM, Holven KB (2015) Comparison of bioavailability of krill oil versus fish oil and health effect. Vasc Health Risk Manag 11:511–524. https://doi.org/10.2147/VHRM.S85165

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsuchiya Y, Ueda H, Yanagimoto K, Kato A, Ochi E (2021) 4-week eicosapentaenoic acid-rich fish oil supplementation partially protects muscular damage following eccentric contractions. J Int Soc Sports Nutr 18(1):18. https://doi.org/10.1186/s12970-021-00411-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jakeman JR, Lambrick DM, Wooley B, Babraj JA, Faulkner JA (2017) Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol 117(3):575–582. https://doi.org/10.1007/s00421-017-3543-y

    Article  CAS  PubMed  Google Scholar 

  20. Storsve AB, Johnsen L, Nyborg C, Melau J, Hisdal J, Burri L (2020) Effects of krill oil and race distance on serum choline and choline metabolites in triathletes: a field study. Front Nutr 7:133. https://doi.org/10.3389/fnut.2020.00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP (2016) Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med 15(1):176–183

    PubMed  PubMed Central  Google Scholar 

  22. Macartney MJ, Hingley L, Brown MA, Peoples GE, McLennan PL (2014) Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br J Nutr 112(12):1984–1992. https://doi.org/10.1017/S0007114514003146

    Article  CAS  PubMed  Google Scholar 

  23. Beekhuizen KS, Davis MD, Kolber MJ, Cheng MS (2009) Test-retest reliability and minimal detectable change of the hexagon agility test. J Strength Cond Res 23(7):2167–2171. https://doi.org/10.1519/JSC.0b013e3181b439f0

    Article  PubMed  Google Scholar 

  24. Markus I, Constantini K, Hoffman JR, Bartolomei S, Gepner Y (2021) Exercise-induced muscle damage: mechanism, assessment and nutritional factors to accelerate recovery. Eur J Appl Physiol 121(4):969–992. https://doi.org/10.1007/s00421-020-04566-4

    Article  CAS  PubMed  Google Scholar 

  25. Tee JC, Bosch AN, Lambert MI (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med 37(10):827–836. https://doi.org/10.2165/00007256-200737100-00001

    Article  PubMed  Google Scholar 

  26. Kayani AC, Morton JP, McArdle A (2008) The exercise-induced stress response in skeletal muscle: failure during aging. Appl Physiol Nutr Metab 33(5):1033–1041. https://doi.org/10.1139/H08-089

    Article  CAS  PubMed  Google Scholar 

  27. Peake JM (2019) Recovery after exercise: what is the current state of play? Curr Opin Physio 10:17–26. https://doi.org/10.1016/j.cophys.2019.03.007

    Article  Google Scholar 

  28. Owens DJ, Twist C, Cobley JN, Howatson G, Close GL (2019) Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 19(1):71–85. https://doi.org/10.1080/17461391.2018.1505957

    Article  PubMed  Google Scholar 

  29. Kyriakidou Y, Wood C, Ferrier C, Dolci A, Elliott B (2021) The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J Int Soc Sports Nutr 18(1):9. https://doi.org/10.1186/s12970-020-00405-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mickleborough TD, Sinex JA, Platt D, Chapman RF, Hirt M (2015) The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr 12:10. https://doi.org/10.1186/s12970-015-0073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tartibian B, Maleki BH, Abbasi A (2009) The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clin J Sport Med 19(2):115–119. https://doi.org/10.1097/JSM.0b013e31819b51b3

    Article  PubMed  Google Scholar 

  32. Tinsley GM, Gann JJ, Huber SR, Andre TL, La Bounty PM, Bowden RG, Gordon PM, Grandjean PW (2017) Effects of Fish oil supplementation on postresistance exercise muscle soreness. J Diet Suppl 14(1):89–100. https://doi.org/10.1080/19390211.2016.1205701

    Article  CAS  PubMed  Google Scholar 

  33. VanDusseldorp TA, Escobar KA, Johnson KE, Stratton MT, Moriarty T, Kerksick CM, Mangine GT, Holmes AJ, Lee M, Endito MR, Mermier CM (2020) Impact of varying dosages of fish oil on recovery and soreness following eccentric exercise. Nutrients. https://doi.org/10.3390/nu12082246

    Article  PubMed  PubMed Central  Google Scholar 

  34. Skarpańska-Stejnborn A, Pilaczyńska-Szcześniak Ł, Basta P, Foriasz J, Arlet J (2010) Effects of supplementation with neptune krill oil (Euphasia Superba) on selected redox parameters and pro-inflammatory markers in athletes during exhaustive exercise. J Hum Kinet 25(2010):49–57. https://doi.org/10.2478/v10078-010-0031-4

    Article  Google Scholar 

  35. Da Boit M, Mastalurova I, Brazaite G, McGovern N, Thompson K, Gray SR (2015) The effect of krill oil supplementation on exercise performance and markers of immune function. PLoS ONE 10(9):e0139174. https://doi.org/10.1371/journal.pone.0139174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Che H, Li H, Song L, Dong X, Yang X, Zhang T, Wang Y, Xie W (2021) Orally administered DHA-enriched phospholipids and DHA-enriched triglyceride relieve oxidative stress, improve intestinal barrier, modulate inflammatory cytokine and gut microbiota, and meliorate inflammatory responses in the brain in dextran sodium sulfate induced colitis in mice. Mol Nutr Food Res 65(15):e2000986. https://doi.org/10.1002/mnfr.202000986

    Article  CAS  PubMed  Google Scholar 

  37. Delsmann MM, Stürznickel J, Amling M, Ueblacker P, Rolvien T (2021) Musculoskeletal laboratory diagnostics in competitive sport. Orthopade 50(9):700–712. https://doi.org/10.1007/s00132-021-04072-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Helge JW, Ayre KJ, Hulbert AJ, Kiens B, Storlien LH (1999) Regular exercise modulates muscle membrane phospholipid profile in rats. J Nutr 129(9):1636–1642. https://doi.org/10.1093/jn/129.9.1636

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi A, Ito A, Shirakawa I, Tamura A, Tomono S, Shindou H, Hedde PN, Tanaka M, Tsuboi N, Ishimoto T, Akashi-Takamura S, Maruyama S, Suganami T (2021) Dietary supplementation with eicosapentaenoic acid inhibits plasma cell differentiation and attenuates lupus autoimmunity. Front Immunol 12:650856. https://doi.org/10.3389/fimmu.2021.650856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sherratt SCR, Shrivastava S, Jacob RF, Chattopadhyay A, Mason RP (2016) Docosahexaenoic acid (DHA), but not eicosapentaenoic acid (EPA) increases both membrane fluidity and cholesterol crystalline domain formation in lipid vesicles. Biophys J. https://doi.org/10.1016/j.bpj.2015.11.3115

    Article  Google Scholar 

  41. Wu T, Geigerman C, Lee YS, Wander RC (2002) Enrichment of LDL with EPA and DHA decreased oxidized LDL-induced apoptosis in U937 cells. Lipids 37(8):789–796. https://doi.org/10.1007/s11745-002-0962-7

    Article  CAS  PubMed  Google Scholar 

  42. McGlory C, Miotto P, Gorissen S, Kamal M, Bahniwal R, Hector A, Chabowski A, Holloway G, Phillips S (2019) OR26: omega 3 fatty acid supplementation attenuates muscle disuse atrophy during two weeks of unilateral leg immobilization in young women. Clin Nutr. https://doi.org/10.1016/s0261-5614(19)32498-7

    Article  Google Scholar 

  43. Jing W, Bi Y, Wang G, Zeng S, Han L, Yang H, Wang N, Zhao Y (2021) Krill oil perturbs proliferation and migration of mouse colon cancer cells in vitro by impeding extracellular signal-regulated protein kinase signaling pathway. Lipids 56(2):141–153. https://doi.org/10.1002/lipd.12281

    Article  CAS  PubMed  Google Scholar 

  44. Patten GS, Abeywardena MY, McMurchie EJ, Jahangiri A (2002) Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J Nutr 132(9):2506–2513. https://doi.org/10.1093/jn/132.9.2506

    Article  CAS  PubMed  Google Scholar 

  45. Cisterna BA, Vargas AA, Puebla C, Fernández P, Escamilla R, Lagos CF, Matus MF, Vilos C, Cea LA, Barnafi E, Gaete H, Escobar DF, Cardozo CP, Sáez JC (2020) Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun 11(1):1073. https://doi.org/10.1038/s41467-019-14063-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. da Costa KA, Badea M, Fischer LM, Zeisel SH (2004) Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts. Am J Clin Nutr 80(1):163–170. https://doi.org/10.1093/ajcn/80.1.163

    Article  PubMed  Google Scholar 

  47. Piérard C, Béracochéa D, Pérès M, Jouanin JC, Liscia P, Satabin P, Martin S, Testylier G, Guézennec CY, Beaumont M (2004) Declarative memory impairments following a military combat course: parallel neuropsychological and biochemical investigations. Neuropsychobiology 49(4):210–217. https://doi.org/10.1159/000077369

    Article  PubMed  Google Scholar 

  48. Mödinger Y, Schön C, Wilhelm M, Hals PA (2019) Plasma kinetics of choline and choline metabolites after a single dose of superbaboost(TM) krill oil or choline bitartrate in healthy volunteers. Nutrients. https://doi.org/10.3390/nu11102548

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang CC, Ding L, Zhang LY, Shi HH, Xue CH, Chi NQ, Yanagita T, Zhang TT, Wang YM (2020) A pilot study on the effects of DHA/EPA-enriched phospholipids on aerobic and anaerobic exercises in mice. Food Funct 11(2):1441–1454. https://doi.org/10.1039/c9fo02489a

    Article  CAS  PubMed  Google Scholar 

  50. Mason SA, Trewin AJ, Parker L, Wadley GD (2020) Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 35:101471. https://doi.org/10.1016/j.redox.2020.101471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J (2015) Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med 86:37–46. https://doi.org/10.1016/j.freeradbiomed.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  52. Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589(Pt 9):2129–2138. https://doi.org/10.1113/jphysiol.2010.201327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Merry TL, Ristow M (2016) Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 594(18):5135–5147. https://doi.org/10.1113/JP270654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berge RK, Ramsvik MS, Bohov P, Svardal A, Nordrehaug JE, Rostrup E, Bruheim I, Bjørndal B (2015) Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study. Lipids Health Dis 14:163. https://doi.org/10.1186/s12944-015-0162-7

    Article  PubMed  PubMed Central  Google Scholar 

  55. Skarpańska-Stejnborn A, Pilaczyńska-Szcześniak Ł, Basta P, Foriasz J, Arlet J (2015) Effects of supplementation with neptune krill oil (Euphasia Superba) on selected redox parameters and pro-inflammatory markers in athletes during exhaustive exercise. J Hum Kinet 47:7–8. https://doi.org/10.1515/hukin-2015-0056

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brown DR, Gough LA, Deb SK, Sparks SA, McNaughton LR (2017) Astaxanthin in exercise metabolism, performance and recovery: a review. Front Nutr 4:76. https://doi.org/10.3389/fnut.2017.00076

    Article  CAS  PubMed  Google Scholar 

  57. Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Sahebkar A (2021) Astaxanthin and Nrf2 signaling pathway: a novel target for new therapeutic approaches. Mini Rev Med Chem. https://doi.org/10.2174/1389557521666210505112834

    Article  Google Scholar 

  58. Polotow TG, Vardaris CV, Mihaliuc AR, Gonçalves MS, Pereira B, Ganini D, Barros MP (2014) Astaxanthin supplementation delays physical exhaustion and prevents redox imbalances in plasma and soleus muscles of Wistar rats. Nutrients 6(12):5819–5838. https://doi.org/10.3390/nu6125819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chitchumroonchokchai C, Failla ML (2017) Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements. Food Res Int 99(Pt 2):936–943. https://doi.org/10.1016/j.foodres.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  60. Calder PC (2017) Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45(5):1105–1115. https://doi.org/10.1042/BST20160474

    Article  CAS  PubMed  Google Scholar 

  61. Browning LM, Walker CG, Mander AP, West AL, Madden J, Gambell JM, Young S, Wang L, Jebb SA, Calder PC (2012) Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am J Clin Nutr 96(4):748–758. https://doi.org/10.3945/ajcn.112.041343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2(3):355–374. https://doi.org/10.3390/nu2030355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., He, Q., Shi, L. et al. Impact of Antarctic krill oil supplementation on skeletal muscle injury recovery after resistance exercise. Eur J Nutr 62, 1345–1356 (2023). https://doi.org/10.1007/s00394-022-03077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-03077-6

Keywords

Navigation