Skip to main content

Advertisement

Log in

Protective effects of Bifidobacterium bifidum FL-228.1 on dextran sulfate sodium-induced intestinal damage in mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Numerous studies have found that probiotics benefit the intestinal barrier. However, the prophylactic effects of probiotics on the intestinal barrier, i.e., if probiotics exert protective effects in healthy individuals to defend them against harmful elements, have seldomly been reported. The present study aimed to investigate the possible mechanisms of potential strains with the function of preventing intestinal barrier damage.

Methods

This study investigated nine potential probiotic strains using in vitro and in vivo models on their intestinal barrier-protecting properties. Transcriptomic was then employed to decipher the underlying mechanisms of action of the strains.

Results

The results showed that the strains, to varying degrees, regulated the ratio of interleukin (IL)-10 and IL-12 in peripheral blood mononuclear cells (PBMCs), increased the transepithelial electrical resistance (TEER) values, and decreased Caco-2 cell monolayers permeability. Correspondingly, the strains showed different prophylactic efficacies in protecting mice from dextran sulfate sodium (DSS)-induced intestinal barrier damage. Remarkably, Bifidobacterium bifidum FL-228.1 (FL-228.1) showed the best prophylactic efficacies in protecting mice from DSS-induced intestinal barrier damage. Further research suggested that FL-228.1 exerted its prophylactic effects by enhancing mucin 2 (Muc2) production and Claudin (Cldn)-4 in the colon. Furthermore, the transcriptomic and protein-protein interactions (PPI) analyses indicated that the inhibition of NLRP3 and the activation of PPARγ and TLR2 could be involved in protecting the intestinal barrier by FL-228.1.

Conclusion

Bifidobacterium bifidum FL-228.1 may be developed as a promising probiotic for the prevention of intestinal barrier damage via PPARγ/NLRP3/ TLR2 pathways by enhancing Muc2 and Cldn-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Martel J, Chang S, Ko Y, Hwang T, Young JD, Ojcius DM (2022) Gut barrier disruption and chronic disease. Trends Endocrinol Metab 334:247–265. https://doi.org/10.1016/j.tem.2022.01.002

    Article  CAS  Google Scholar 

  2. Takamura T, Harama D, Fukumoto S, Nakamura Y, Shimokawa N, Ishimaru K, Ikegami S, Makino S, Kitamura M, Nakao A (2011) Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol Cell Biol 897:817–822. https://doi.org/10.1038/icb.2010.165

    Article  CAS  Google Scholar 

  3. Nanthakumar NN, Fusunyan RD, Sanderson I, Walker WA (2000) Inflammation in the developing human intestine: a possible pathophysiologic contribution to necrotizing enterocolitis. Proc Natl Acad Sci U S A 9711:6043–6048. https://doi.org/10.1073/pnas.97.11.6043

    Article  Google Scholar 

  4. Wang Y, Yang J, Wang W, Sanidad KZ, Cinelli MA, Wan D, Hwang SH, Kim D, Lee KSS, Xiao H, Hammock BD, Zhang G (2020) Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation. P Natl Acad Sci Usa. https://doi.org/10.1073/pnas.1916189117/-/DCSupplemental

    Article  Google Scholar 

  5. Zhang M, Yang L, Zhu M, Yang B, Yang Y, Jia X, Feng L (2022) Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int J Biol Macromol 206:849–860. https://doi.org/10.1016/j.ijbiomac.2022.03.077

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L, Hibi T (2020) Ulcerative colitis. Nat Rev Dis Primers. https://doi.org/10.1038/s41572-020-0205-x

    Article  PubMed  Google Scholar 

  7. Suzuki T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70:631–659

    Article  CAS  PubMed  Google Scholar 

  8. Van der Sluis M, De Koning BAE, De Bruijn ACJM, Velcich A, Meijerink JPP, Van Goudoever JB, Büller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AWC (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 1311:117–129. https://doi.org/10.1053/j.gastro.2006.04.020

    Article  CAS  Google Scholar 

  9. Leon-Coria A, Kumar M, Workentine M, Moreau F, Surette M, Chadee K (2021) Muc2 mucin and nonmucin microbiota confer distinct innate host defense in disease susceptibility and colonic injury. Cell Mol Gastroenterol Hepatol 111:77–98. https://doi.org/10.1016/j.jcmgh.2020.07.003

    Article  CAS  Google Scholar 

  10. van der Post S, Jabbar KS, Birchenough G, Arike L, Akhtar N, Sjovall H, Johansson MEV, Hansson GC (2019) Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 6812:2142–2151. https://doi.org/10.1136/gutjnl-2018-317571

    Article  CAS  Google Scholar 

  11. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastro Hepat 1610:605–616. https://doi.org/10.1038/s41575-019-0173-3

    Article  Google Scholar 

  12. Zaylaa M, Al Kassaa I, Alard J, Peucelle V, Boutillier D, Desramaut J, Dabboussi F, Pot B, Grangette C (2018) Probiotics in IBD: combining in vitro and in vivo models for selecting strains with both anti-inflammatory potential as well as a capacity to restore the gut epithelial barrier. J Funct Foods 47:304–315. https://doi.org/10.1016/j.jff.2018.05.029

    Article  CAS  Google Scholar 

  13. Cuffaro B, Assohoun ALW, Boutillier D, Súkeníková L, Desramaut J, Boudebbouze S, Salomé-Desnoulez S, Hrdý J, Waligora-Dupriet A, Maguin E, Grangette C (2020) In vitro characterization of gut microbiota-derived commensal strains: Selection of parabacteroides distasonis strains alleviating TNBS-Induced colitis in mice. Cells 99:2104. https://doi.org/10.3390/cells9092104

    Article  CAS  Google Scholar 

  14. Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enter invasive Escherichia coli (EIEC). Gut 527:988–997. https://doi.org/10.1136/gut.52.7.988

    Article  Google Scholar 

  15. Chandran A, Duary RK, Grover S, Batish VK (2013) Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91. Microbiol Res 1689:555–562. https://doi.org/10.1016/j.micres.2013.04.010

    Article  CAS  Google Scholar 

  16. Sun M, Liu Y, Song Y, Gao Y, Zhao F, Luo Y, Qian F, Mu G, Tuo Y (2020) The ameliorative effect of Lactobacillus plantarum-12 on DSS-induced murine colitis. Food Funct 116:5205–5222. https://doi.org/10.1039/d0fo00007h

    Article  CAS  Google Scholar 

  17. Shi M, Yue Y, Ma C, Dong L, Chen F (2022) Pasteurized Akkermansia muciniphila ameliorate the LPS-induced intestinal barrier dysfunction via modulating AMPK and NF-κB through TLR2 in Caco-2 Cells. Nutrients 144:764. https://doi.org/10.3390/nu14040764

    Article  CAS  Google Scholar 

  18. Rose EC, Odle J, Blikslager AT, Ziegler AL (2021) Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function. Int J Mol Sci 2213:6729. https://doi.org/10.3390/ijms22136729

    Article  CAS  Google Scholar 

  19. Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, Zhu X, Wang Z, Mcclain DA, Kritchevsky SB, Kitzman DW, Yadav H (2020) Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3–5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C Elegans to mice. Geroscience 421:333–352. https://doi.org/10.1007/s11357-019-00137-4

    Article  CAS  Google Scholar 

  20. Li Y, Zhang T, Guo C, Geng M, Gai S, Qi W, Li Z, Song Y, Luo X, Zhang T, Wang N (2020) Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the notch signaling pathway and activating ATOH-1. Pathog Dis. https://doi.org/10.1093/femspd/ftaa016

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Cao H, Liu L, Wang B, Walker WA, Acra SA, Yan F (2014) Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a Lactobacillus rhamnosus GG-derived protein. J Biol Chem 28929:20234–20244. https://doi.org/10.1074/jbc.M114.553800

    Article  CAS  Google Scholar 

  22. Mujagic Z, de Vos P, Boekschoten MV, Govers C, Pieters HHM, de Wit NJW, Bron PA, Masclee AAM, Troost FJ (2017) The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo-controlled trial. Sci Rep-Uk. https://doi.org/10.1038/srep40128

    Article  Google Scholar 

  23. Lu Y, Zhang J, Yi H, Zhang Z, Zhang L (2019) Screening of intestinal peristalsis-promoting probiotics based on a zebrafish model. Food Funct 104:2075–2082. https://doi.org/10.1039/c8fo02523a

    Article  CAS  Google Scholar 

  24. Lu Y, Zhang Z, Liang X, Chen Y, Zhang J, Yi H, Liu T, Yang L, Shi H, Zhang L (2019) Study of gastrointestinal tract viability and motility via modulation of serotonin in a zebrafish model by probiotics. Food Funct 1011:7416–7425. https://doi.org/10.1039/c9fo02129a

    Article  CAS  Google Scholar 

  25. Wang SM, Zhang LW, Fan RB, Han X, Yi HX, Zhang LL, Xue CH, Li HB, Zhang YH, Shigwedha N (2014) Induction of HT-29 cells apoptosis by lactobacilli isolated from fermented products. Res Microbiol 1653:202–214. https://doi.org/10.1016/j.resmic.2014.02.004

    Article  CAS  Google Scholar 

  26. Cui Q, Tian X, Liang X, Zhang Z, Wang R, Zhou Y, Yi H, Gong P, Lin K, Liu T, Zhang L (2022) Bifidobacterium bifidum relieved DSS-induced colitis in mice potentially by activating aryl hydrocarbon receptor. Food Funct. https://doi.org/10.1039/D1FO04219J

    Article  PubMed  Google Scholar 

  27. Xie J, Yu Q, Nie S, Fan S, Xiong T, Xie M (2015) Effects of Lactobacillus plantarum NCU116 on intestine mucosal immunity in immunosuppressed mice. J Agr Food Chem 6351:10914–10920. https://doi.org/10.1021/acs.jafc.5b04757

    Article  CAS  Google Scholar 

  28. Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, van Rooij N, van Leerdam ME, Depla A, Smit EF, Hartemink KJ, de Groot R, Wolkers MC, Sachs N, Snaebjornsson P, Monkhorst K, Haanen J, Clevers H, Schumacher TN, Voest EE (2018) Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 1746:1586–1598. https://doi.org/10.1016/j.cell.2018.07.009

    Article  CAS  Google Scholar 

  29. Sheikhi A, Shakerian M, Giti H, Baghaeifar M, Jafarzadeh A, Ghaed V, Heibor MR, Baharifar N, Dadafarin Z, Bashirpour G (2016) Probiotic yogurt culture bifidobacterium animalis subsp. Lactis BB-12 and lactobacillus acidophilus LA-5 modulate the cytokine secretion by peripheral blood mononuclear cells from patients with ulcerative colitis. Drug Res (Stuttg) 666:300–305. https://doi.org/10.1055/s-0035-1569414

    Article  CAS  Google Scholar 

  30. Wu X, Huang X, Chen R, Li T, Ye H, Xie W, Huang Z, Cao G (2019) Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers. Inflammation 426:2215–2225. https://doi.org/10.1007/s10753-019-01085-z

    Article  CAS  Google Scholar 

  31. Shi C, Chen H, Liang Y, Xia Y, Yang Y, Yang J, Zhang J, Wang S, Liu J, Qin H (2014) Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice. World J Gastroenterol 2016:4636–4647. https://doi.org/10.3748/wjg.v20.i16.4636

    Article  CAS  Google Scholar 

  32. Tsai P, Schlichtig A, Ziegler E, Ernst H, Haberstroh J, Stelzer HD, Hackbarth H (2015) Effects of different blood collection methods on indicators of welfare in mice. Lab Anim 448:301–310. https://doi.org/10.1038/laban.738

    Article  Google Scholar 

  33. Sivakumar PV, Westrich GM, Kanaly S, Garka K, Born TL, Derry JM, Viney JL (2002) Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut 506:812–820. https://doi.org/10.1136/gut.50.6.812

    Article  Google Scholar 

  34. Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW (2017) Quantitating the cell: turning images into numbers with ImageJ Wiley interdisciplinary reviews. Dev Biol. https://doi.org/10.1002/wdev.260

    Article  Google Scholar 

  35. Mao T, Su CW, Ji Q, Chen CY, Wang R, Vijaya KD, Lan J, Jiao L, Shi HN (2021) Hyaluronan-induced alterations of the gut microbiome protects mice against Citrobacter rodentium infection and intestinal inflammation. Gut Microbes 131:1972757. https://doi.org/10.1080/19490976.2021.1972757

    Article  CAS  Google Scholar 

  36. Wu Y, Li J, Ding W, Ruan Z, Zhang L (2021) Enhanced intestinal barriers by puerarin in combination with tryptophan. J Agr Food Chem 6951:15575–15584. https://doi.org/10.1021/acs.jafc.1c05830

    Article  CAS  Google Scholar 

  37. Hao S, Li S, Wang J, Zhao L, Yan Y, Cao Q, Wu T, Liu L, Wang C (2018) Transcriptome analysis of Phycocyanin-mediated inhibitory functions on non-Small cell lung cancer a549 cell growth. Mar Drugs 1612:511. https://doi.org/10.3390/md16120511

    Article  CAS  Google Scholar 

  38. Wu D, Chen S, Ye X, Ahmadi S, Hu W, Yu C, Zhu K, Cheng H, Linhardt RJ, He Q (2022) Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll 127:107209. https://doi.org/10.1016/j.foodhyd.2021.107209

    Article  CAS  Google Scholar 

  39. Han M, Liao W, Si X, Bai C, Gai Z (2022) Protective effects of Lacticaseibacillus rhamnosus Hao9 on dextran sulphate sodium-induced ulcerative colitis in mice. J Appl Microbiol 1333:2039–2049. https://doi.org/10.1111/jam.15665

    Article  CAS  Google Scholar 

  40. Wu Y, Li A, Liu H, Zhang Z, Zhang C, Ma C, Zhang L, Zhang J (2022) Lactobacillus plantarum HNU082 alleviates dextran sulfate sodium-induced ulcerative colitis in mice through regulating gut microbiome. Food Funct 1319:10171–10185. https://doi.org/10.1039/D2FO02303B

    Article  Google Scholar 

  41. Hermans L, De Pelsmaeker S, Denaeghel S, Cox E, Favoreel HW, Devriendt B (2021) β-Glucan-Induced IL-10 secretion by monocytes triggers porcine NK cell cytotoxicity. Front Immunol 12:634402. https://doi.org/10.3389/fimmu.2021.634402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Powell DN, Swimm A, Sonowal R, Bretin A, Gewirtz AT, Jones RM, Kalman D (2020) Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc Natl Acad Sci 11735:21519–21526. https://doi.org/10.1073/pnas.2003004117

    Article  CAS  Google Scholar 

  43. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ (1950) Colgan SP (2017) Microbial-Derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of Claudin-2. J Immunol 1998:2976–2984. https://doi.org/10.4049/jimmunol.1700105

    Article  CAS  Google Scholar 

  44. Moschen AR, Tilg H, Raine T (2019) IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat Rev Gastroenterol Hepatol 163:185–196. https://doi.org/10.1038/s41575-018-0084-8

    Article  CAS  Google Scholar 

  45. Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 616:918–932. https://doi.org/10.1136/gutjnl-2011-300904

    Article  CAS  Google Scholar 

  46. de Roock S, van Elk M, van Dijk MEA, Timmerman HM, Rijkers GT, Prakken BJ, Hoekstra MO, de Kleer IM (2009) Lactic acid bacteria differ in their ability to induce functional regulatory T cells in humans. Clin Exp Allergy. https://doi.org/10.1111/j.1365-2222.2009.03344.x

    Article  PubMed  Google Scholar 

  47. Ashraf R, Vasiljevic T, Day SL, Smith SC, Donkor ON (2014) Lactic acid bacteria and probiotic organisms induce different cytokine profile and regulatory T cells mechanisms. J Funct Foods 6:395–409. https://doi.org/10.1016/j.jff.2013.11.006

    Article  CAS  Google Scholar 

  48. Tao F, Xing X, Wu J, Jiang R (2021) Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice. PLoS ONE 163:e248482. https://doi.org/10.1371/journal.pone.0248482

    Article  CAS  Google Scholar 

  49. Zhang P, Li B, Mu J, Liu D, Zhang G, Mao X, Huang K, Waldron KJ, Chen X (2022) The therapeutic and preventive effects of a canine-origin VB12-producing Lactobacillus on DSS-induced colitis in mice. J Anim Physiol an N. https://doi.org/10.1111/jpn.13767

    Article  Google Scholar 

  50. Cario E, Gerken G, Podolsky DK (2007) Toll-Like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 1324:1359–1374. https://doi.org/10.1053/j.gastro.2007.02.056

    Article  CAS  Google Scholar 

  51. Maroni L, Agostinelli L, Saccomanno S, Pinto C, Giordano DM, Rychlicki C, De Minicis S, Trozzi L, Banales JM, Melum E, Karlsen TH, Benedetti A, Baroni GS, Marzioni M (2017) Nlrp3 activation induces IL-18 synthesis and affects the epithelial barrier function in reactive cholangiocytes. Am J Pathol 1872:366–376. https://doi.org/10.1016/j.ajpath.2016.10.010

    Article  CAS  Google Scholar 

  52. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, Low JS, Harman CCD, Graham M, Elinav E, Flavell RA (2015) Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 1636:1444–1456. https://doi.org/10.1016/j.cell.2015.10.072

    Article  CAS  Google Scholar 

  53. Hand TW (2015) Interleukin-18: the bouncer at the mucosal bar. Cell 1636:1310–1312. https://doi.org/10.1016/j.cell.2015.11.041

    Article  CAS  Google Scholar 

  54. Yang C, Wu C, Lin T, Cheng Y, Chang C, Lee K, Tsai P, Tsai Y (2021) Inhibitory effect of PPARγ on NLRP3 inflammasome activation. Theranostics 115:2424–2441. https://doi.org/10.7150/thno.46873

    Article  CAS  Google Scholar 

  55. Li D, Feng Y, Tian M, Ji J, Hu X, Chen F (2021) Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation. Microbiome. https://doi.org/10.1186/s40168-021-01028-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Project of Taishan Industry Leading Talent of Shandong Province (LJNY202101), and the National Natural Science Foundation of China (Grant number: 31901664).

Author information

Authors and Affiliations

Authors

Contributions

LZ and TL were in charge of conceptualization, funding acquisition and writing-review and editing; Investigating, methodology, visualization, and writing-original draft preparation were done by RW; MK, QC and XT were in charge of methodology; Data curation was done by R. W. and YZ; HY, PG, KL and ZZ were in charge of writing-review and editing. All authors have edited and approved the final manuscript.

Corresponding authors

Correspondence to Tongjie Liu or Lanwei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest relevant to this work.

Ethical approval

The Laboratory Animal Ethics Committee of the College of Food Science and Engineering of Ocean University of China.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Kuerman, M., Cui, Q. et al. Protective effects of Bifidobacterium bifidum FL-228.1 on dextran sulfate sodium-induced intestinal damage in mice. Eur J Nutr 62, 1267–1280 (2023). https://doi.org/10.1007/s00394-022-03064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-03064-x

Keywords

Navigation