Skip to main content
Log in

Low-fat dairy consumption improves intestinal immune function more than high-fat dairy in a diet-induced swine model of insulin resistance

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

A Correction to this article was published on 11 October 2023

This article has been updated

Abstract

Purpose

To understand the effects of consuming high-fat and low-fat dairy products on postprandial cardiometabolic risk factors and intestinal immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance.

Methods

LBW piglets were randomized to consume one of the 3 experimental high fat diets and were fed for a total of 7 weeks: (1) Control high fat (LBW–CHF), (2) CHF diet supplemented with 3 servings of high-fat dairy (LBW–HFDairy) and (3) CHF diet supplemented with 3 servings of low-fat dairy (LBW–LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW–CHF) or standard pig grower diet (NBW–Chow). At 11 weeks of age, all piglets underwent an established modified oral glucose and fat tolerance test. At 12 weeks of age, piglets were euthanized and ex vivo cytokine production by cells isolated from mesenteric lymph node (MLN) stimulated with mitogens was assessed.

Results

Dairy consumption did not modulate postprandial plasma lipid, inflammatory markers and glucose concentrations. A lower production of IL-2 and TNF-α after pokeweed mitogen (PWM) stimulation was observed in LBW–CHF vs NBW–Chow (P < 0.05), suggesting impaired MLN T cell function. While feeding high-fat dairy had minimal effects, feeding low-fat dairy significantly improved the production of IL-2 and TNF-α after PWM stimulation (P < 0.05).

Conclusions

Irrespective of fat content, dairy had a neutral effect on postprandial cardiometabolic risk factors. Low-fat dairy products improved intestinal T cell function to a greater extent than high-fat dairy in this swine model of obesity and insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

Abbreviations

APC:

Antigen presenting cell

AUC:

Area under curve

CHF:

Control high-fat diet

CI:

Confidence interval

CV:

Coefficient of variation

CVD:

Cardiovascular disease

ELISA:

Enzyme-linked immunosorbent assay

FSC:

Forward scatter

GALT:

Gut-associated lymphoid tissue

HFDairy:

High-fat dairy diet

IEC:

Intestinal epithelial cells

IFN-γ:

Interferon-gamma

IL:

Interleukin

LBW:

Low birthweight

LDL-C:

Low-density lipoprotein cholesterol

LFDairy:

Low-fat dairy diet

LPS:

Lipopolysaccharide

MFI:

Median florescence intensity

MFGM:

Milk fat globular membrane

MHC:

Major histocompatibility complex

MLN:

Mesenteric lymph node

MOGTT:

Modified oral glucose and fat tolerance test

NBW:

Normal birthweight

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate-buffered saline

PC:

Phosphatidylcholine

PMA-I:

Phorbol 12-myristate 13-acetate plus ionomycin

PP:

Peyer's patches

PWM:

Pokeweed mitogen

SEM:

Standard error of the mean

SM:

Sphingomyelin

S–MCFA:

Short–medium chain fatty acid

SRTC:

Swine research technology centre

SSC:

Side scatter

TC:

Total cholesterol

TG:

Triglycerides

Th:

T helper cell

TLR-4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-alpha

Treg:

T regulatory cell

References

  1. Calder PC (2013) Feeding the immune system. Proc Nutr Soc 72:299–309. https://doi.org/10.1017/S0029665113001286

    Article  PubMed  Google Scholar 

  2. Soderholm AT, Pedicord VA (2019) Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology 158:267–280. https://doi.org/10.1111/imm.13117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Winer DA, Luck H, Tsai S, Winer S (2016) The intestinal immune system in obesity and insulin resistance. Cell Metab 23:413–426. https://doi.org/10.1016/j.cmet.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  4. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS et al (2015) Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21:527–542. https://doi.org/10.1016/j.cmet.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Ruth MR, Proctor SD, Field CJ (2009) Effects of feeding fish oil on mesenteric lymph node cytokine responses in obese leptin receptor-deficient JCR:LA-cp rats. Int J Obes 33:96–103. https://doi.org/10.1038/ijo.2008.227

    Article  CAS  Google Scholar 

  6. Blewett HJ, Gerdung CA, Ruth MR, Proctor SD, Field CJ (2009) Vaccenic acid favourably alters immune function in obese JCR:LA-cp rats. Br J Nutr 102:526–536. https://doi.org/10.1017/S0007114509231722

    Article  CAS  PubMed  Google Scholar 

  7. Bozzetto L, Della-Pepa G, Vetrani C, Rivellese AA (2020) Dietary impact on postprandial lipemia. Front Endocrinol 11:337. https://doi.org/10.3389/fendo.2020.00337

    Article  Google Scholar 

  8. Mangat R, Warnakula S, Borthwick F, Hassanali Z, Uwiera RRE, Russell JC et al (2012) Arterial retention of remnant lipoproteins ex vivo is increased in insulin resistance because of increased arterial biglycan and production of cholesterol-rich atherogenic particles that can be improved by ezetimibe in the JCR:LA-cp rat. J Am Heart Assoc 1:e003434. https://doi.org/10.1161/JAHA.112.003434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Oostrom AJHHM, Sijmonsma TP, Rabelink TJ, van Asbeck BS, Castro Cabezas M (2003) Postprandial leukocyte increase in healthy subjects. Metabolism 52:199–202. https://doi.org/10.1053/meta.2003.50037

    Article  CAS  PubMed  Google Scholar 

  10. Alipour A, van Oostrom AJHHM, Izraeljan A, Verseyden C, Collins JM, Frayn KN et al (2008) Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 28:792–797. https://doi.org/10.1161/ATVBAHA.107.159749

    Article  CAS  PubMed  Google Scholar 

  11. Kris-Etherton PM, Fleming JA (2015) Emerging nutrition science on fatty acids and cardiovascular disease: nutritionists’ perspectives. Adv Nutr 6:326S-S337. https://doi.org/10.3945/an.114.006981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colonic T, Homeostasis C, Smith PM, Howitt MR, Panikov N, Michaud M et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science 341:569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  Google Scholar 

  13. Peng L, Li ZR, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619–1625. https://doi.org/10.3945/jn.109.104638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN (2016) Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J Nutr Biochem 30:93–101. https://doi.org/10.1016/j.jnutbio.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Wu J, Niu Y, Chen H, Tang Q, Zhong Y et al (2019) Milk fat globule membrane inhibits NLRP3 inflammasome activation and enhances intestinal barrier function in a rat model of short bowel. J Parenter Enter Nutr 43:677–685. https://doi.org/10.1002/jpen.1435

    Article  CAS  Google Scholar 

  16. Barrera JA, Patel D, Field C, Pouliot Y, Goruk S, Jacobs R, et al (2021) A Diet High in Lipid Soluble Forms of Choline Modulates Gut-Associated Immune Function in Sprague-Dawley Dams. Current Developments in Nutrition 5 (Supplement_2)

  17. Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen M et al (2018) Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med 15:e1002670. https://doi.org/10.1371/journal.pmed.1002670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. She Y, Mangat R, Tsai S, Proctor SD, Richard C (2022) The interplay of obesity, dyslipidemia and immune dysfunction: a brief overview on pathophysiology, animal models, and nutritional modulation. Front Nutr 9:840209. https://doi.org/10.3389/fnut.2022.840209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fontaine MA, Diane A, Singh VP, Mangat R, Krysa JA, Nelson R et al (2019) Low birth weight causes insulin resistance and aberrant intestinal lipid metabolism independent of microbiota abundance in Landrace-Large White pigs. FASEB J 33:9250–9262. https://doi.org/10.1096/fj.201801302RR

    Article  CAS  PubMed  Google Scholar 

  20. She Y, Wang K, Makarowski A, Mangat R, Tsai S, Willing BP et al (2022) Effect of high-fat and low-fat dairy products on cardiometabolic risk factors and immune function in a low birthweight swine model of diet-induced insulin resistance. Front Nutr 9:923120. https://doi.org/10.3389/fnut.2022.923120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh VP, Fontaine MA, Mangat R, Fouhse JM, Diane A, Willing BP et al (2021) High vaccenic acid content in beef fat attenuates high fat and high carbohydrate western diet induced changes in lipid metabolism and gut microbiota in pigs. Microorganisms 9:2517. https://doi.org/10.3390/microorganisms9122517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richard C, Lewis ED, Zhao YY, Asomaning J, Jacobs RL, Field CJ et al (2016) Measurement of the total choline content in 48 commercial dairy products or dairy alternatives. J Food Compos Anal 45:1–8. https://doi.org/10.1016/j.jfca.2015.09.009

    Article  CAS  Google Scholar 

  23. Azarcoya-Barrera J, Field CJ, Goruk S, Makarowski A, Curtis JM, Pouliot Y et al (2021) Buttermilk: an important source of lipid soluble forms of choline that influences the immune system development in Sprague-Dawley rat offspring. Eur J Nutr 60:2807–2818. https://doi.org/10.1007/s00394-020-02462-3

    Article  CAS  PubMed  Google Scholar 

  24. Azarcoya-Barrera J, Goruk S, Lewis ED, Pouliot Y, Curtis JM, Steele R et al (2020) Feeding buttermilk-derived choline forms during gestation and lactation modulates ex vivo t-cell response in rat dams. J Nutr 150:1958–1965. https://doi.org/10.1093/jn/nxaa089

    Article  PubMed  Google Scholar 

  25. le Huërou-Luron I, Bouzerzour K, Ferret-Bernard S, Ménard O, le Normand L, Perrier C et al (2018) A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. Eur J Nutr 57:463–476. https://doi.org/10.1007/s00394-016-1329-3

    Article  CAS  PubMed  Google Scholar 

  26. Ghezzal S, Postal BG, Quevrain E, Brot L, Seksik P, Leturque A et al (2020) Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158530. https://doi.org/10.1016/j.bbalip.2019.158530

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt KA, Cromer G, Burhans MS, Kuzma JN, Hagman DK, Fernando I et al (2021) The impact of diets rich in low-fat or full-fat dairy on glucose tolerance and its determinants: a randomized controlled trial. Am J Clin Nutr 113:534–547. https://doi.org/10.1093/ajcn/nqaa301

    Article  PubMed  Google Scholar 

  28. O’Connor S, Julien P, Weisnagel SJ, Gagnon C, Rudkowska I (2019) Impact of a high intake of dairy product on insulin sensitivity in hyperinsulinemic adults: a crossover randomized controlled trial. Curr Dev Nutr 3:083. https://doi.org/10.1093/cdn/nzz083

    Article  Google Scholar 

  29. Engel S, Tholstrup T, Bruun JM, Astrup A, Richelsen B, Raben A (2018) Effect of high milk and sugar-sweetened and non-caloric soft drink intake on insulin sensitivity after 6 months in overweight and obese adults: a randomized controlled trial. Eur J Clin Nutr 72:358–366. https://doi.org/10.1038/s41430-017-0006-9

    Article  CAS  PubMed  Google Scholar 

  30. Thorning TK, Raziani F, Bendsen NT, Astrup A, Tholstrup T, Raben A (2015) Diets with high-fat cheese, high-fat meat, or carbohydrate on cardiovascular risk markers in overweight postmenopausal women: a randomized crossover trial. Am J Clin Nutr 102:573–581. https://doi.org/10.3945/ajcn.115.109116

    Article  CAS  PubMed  Google Scholar 

  31. Bohl M, Bjørnshave A, Larsen MK, Gregersen S, Hermansen K (2017) The effects of proteins and medium-chain fatty acids from milk on body composition, insulin sensitivity and blood pressure in abdominally obese adults. Eur J Clin Nutr 71:76–82. https://doi.org/10.1038/ejcn.2016.207

    Article  CAS  PubMed  Google Scholar 

  32. Clemente G, Mancini M, Nazzaro F, Lasorella G, Rivieccio A, Palumbo AM et al (2003) Effects of different dairy products on postprandial lipemia. Nutr Metab Cardiovasc Dis 13:377–383. https://doi.org/10.1016/s0939-4753(03)80007-8

    Article  CAS  PubMed  Google Scholar 

  33. Bohl M, Bjørnshave A, Rasmussen K, v., Schioldan AG, Amer B, Larsen MK, et al (2015) Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): a 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study. Am J Clin Nutr 101:870–878. https://doi.org/10.3945/ajcn.114.097923

    Article  CAS  PubMed  Google Scholar 

  34. Wang K, She Y, Mangat R, Makarowski A, Roy B, Bruce H, et al (2021) Exploring Increased Intestinal Lipid Absorption and Identifying Strategies to Improve Pork Quality in Low-Birth-Weight Swine. Curr Dev Nutr 5 (Supplement_2)

  35. Schmid A, Petry N, Walther B, Bütikofer U, Luginbüh W, Gille D et al (2015) Inflammatory and metabolic responses to high-fat meals with and without dairy products in men. Br J Nutr 113:1853–1861. https://doi.org/10.1017/S0007114515000677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292. https://doi.org/10.1093/ajcn/86.5.1286

    Article  CAS  PubMed  Google Scholar 

  37. Herieka M, Erridge C (2014) High-fat meal induced postprandial inflammation. Mol Nutr Food Res 58:136–146. https://doi.org/10.1002/mnfr.201300104

    Article  CAS  PubMed  Google Scholar 

  38. van Oostrom AJHHM, Sijmonsma TP, Verseyden C, Jansen EHJM, de Koning EJP, Rabelink TJ et al (2003) Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res 44:576–583. https://doi.org/10.1194/jlr.M200419-JLR200

    Article  CAS  PubMed  Google Scholar 

  39. Fritsche KL (2015) The science of fatty acids and inflammation. Adv Nutr 6:293S-301S. https://doi.org/10.3945/an.114.006940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mkumbuzi L, Mfengu MMO, Engwa GA, Sewani-Rusike CR (2020) Insulin resistance is associated with gut permeability without the direct influence of obesity in young adults. Diabetes Metab Syndr Obes 13:2997–3008. https://doi.org/10.2147/DMSO.S256864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Loera-Rodriguez CO, Delgado-Rizo V, Alvarado-Navarro A, Agraz-Cibrian JM, Segura-Ortega JE, Fafutis-Morris M (2014) Over-expression of TLR4-CD14, pro-inflammatory cytokines, metabolic markers and NEFAs in obese non-diabetic Mexicans. J Inflamm 11:39. https://doi.org/10.1186/s12950-014-0039-y

    Article  CAS  Google Scholar 

  42. Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M et al (2000) Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 64:3471–3475. https://doi.org/10.4049/jimmunol.164.7.3471

    Article  Google Scholar 

  43. Vergadi E, Vaporidi K, Tsatsanis C (2018) Regulation of endotoxin tolerance and compensatory anti-inflammatory response syndrome by non-coding RNAs. Front Immunol 9:2705. https://doi.org/10.3389/fimmu.2018.02705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lamas O, Martinez JA, Marti A (2002) T-helper lymphopenia and decreased mitogenic response in cafeteria diet-induced obese rats. Nutr Res 22:497–506

    Article  CAS  Google Scholar 

  45. Richard C, Wadowski M, Goruk S, Cameron L, Sharma AM, Field CJ (2017) Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care 5:e000379. https://doi.org/10.1136/bmjdrc-2016-000379

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ross SH, Cantrell DA (2018) Signaling and Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol 36:411–433. https://doi.org/10.1146/annurev-immunol-042617-053352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zelová H, Hošek J (2013) TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm Res 62:641–651. https://doi.org/10.1007/s00011-013-0633-0

    Article  CAS  PubMed  Google Scholar 

  48. Tucureanu MM, Rebleanu D, Constantinescu CA, Deleanu M, Voicu G, Butoi E et al (2018) Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int J Nanomed 13:63–76. https://doi.org/10.2147/IJN.S150918

    Article  CAS  Google Scholar 

  49. Tibaes JRB, Silva MIB, Cervantes PB, Wollin B, Makarowski A, Vine D et al (2021) Expression of CD25 in individuals with obesity with or without insulin resistance after following a north american diet. Curr Dev Nutr 5(2):1122

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Dairy Farmers of Canada (RES0042193) and the Natural Sciences and Engineering Research Council of Canada Discovery Grants to both CR and SDP. YS is a recipient of a Ph.D. scholarship from China Scholarship Council (201807980001).

Funding

Dairy Farmers of Canada (Grant No. RES0042193), Natural Sciences and Engineering Research Council of Canada (Grant No. RES0038933).

Author information

Authors and Affiliations

Authors

Contributions

CR and SDP designed and obtained funding for this study. ST and BPW provided expertise on immunology and animal model. YS, AM, RM and KW conducted research and analyzed data. YS performed the statistical analysis and wrote the manuscript under the supervision of CR and SDP. CR has primary responsibility for final content. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Caroline Richard.

Ethics declarations

Conflict of interest

None.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, Y., Wang, K., Makarowski, A. et al. Low-fat dairy consumption improves intestinal immune function more than high-fat dairy in a diet-induced swine model of insulin resistance. Eur J Nutr 62, 699–711 (2023). https://doi.org/10.1007/s00394-022-03013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-03013-8

Keywords

Navigation