Skip to main content
Log in

Impact of dietary sucralose and sucrose-sweetened water intake on lipid and glucose metabolism in male mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Aims

Overconsumption of sugar-sweetened beverages (SSBs) is associated with an increased risk of metabolic disorders, including obesity and diabetes. However, accumulating evidence also suggests the potential negative impact of consuming nonnutritive sweeteners (NNSs) on weight and glycaemic control. The metabolic effects of sucralose, the most widely used NNS, remain controversial. This study aimed to compare the impact of intake of dietary sucralose (acceptable daily intake dose, ADI dose) and sucrose-sweetened water (at the same sweetness level) on lipid and glucose metabolism in male mice.

Materials and methods

Sucralose (0.1 mg/mL) or sucrose (60 mg/mL) was added to the drinking water of 8-week-old male C57BL/6 mice for 16 weeks, followed by oral glucose and intraperitoneal insulin tolerance tests, and measurements of bone mineral density, plasma lipids, and hormones. After the mice were sacrificed, the duodenum and ileum were used for examination of sweet taste receptors (STRs) and glucose transporters.

Results

A significant increase in fat mass was observed in the sucrose group of mice after 16 weeks of sweetened water drinking. Sucrose consumption also led to increased levels of plasma LDL, insulin, lipid deposition in the liver, and increased glucose intolerance in mice. Compared with the sucrose group, mice consuming sucralose showed much lower fat accumulation, hyperlipidaemia, liver steatosis, and glucose intolerance. In addition, the daily dose of sucralose only had a moderate effect on T1R2/3 in the intestine, without affecting glucose transporters and plasma insulin levels.

Conclusion

Compared with mice consuming sucrose-sweetened water, daily drinking of sucralose within the ADI dose had a much lower impact on glucose and lipid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SSB:

Sugar-sweetened beverage

NNS:

Nonnutritive sweetener

ADI:

Acceptable daily intake

STRs:

Sweet taste receptors

FDA:

U.S. Food and Drug Administration

ADME:

Absorption, distribution, metabolism, and excretion

NOAEL:

No observed adverse effect level

BMD:

Bone mineral density

RER:

Respiratory exchange ratio

PFA:

Paraformaldehyde

GTT:

Glucose tolerance test

ITT:

Insulin tolerance test

TC:

Total plasma cholesterol

TG:

Triglycerides

LDL:

Low-density lipoprotein

HDL:

High-density lipoprotein

FPKM:

Fragments per kilobase of transcript per million mapped reads

Hb1AC:

Blood haemoglobin A1c

GLUT2:

Glucose transporter 2

SGLT1:

Sodium/glucose cotransporter 1

T1R2/3:

Taste receptor type 1 member 2/3

GIP:

Glucose-dependent insulinotropic peptide

GLP-1:

Glucagon-like peptide-1

AHA:

American Heart Association

References

  1. Burchfield JG, Kebede MA, Meoli CC, Stockli J, Whitworth PT, Wright AL, Hoffman NJ, Minard AY, Ma X, Krycer JR, Nelson ME, Tan SX, Yau B, Thomas KC, Wee NKY, Khor EC, Enriquez RF, Vissel B, Biden TJ, Baldock PA, Hoehn KL, Cantley J, Cooney GJ, James DE, Fazakerley DJ (2018) High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. J Biol Chem 293(15):5731–5745. https://doi.org/10.1074/jbc.RA117.000808

    Article  CAS  Google Scholar 

  2. Herman MA, Birnbaum MJ (2021) Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 33(12):2329–2354. https://doi.org/10.1016/j.cmet.2021.09.010

    Article  CAS  Google Scholar 

  3. Li XE, Lopetcharat K, Drake MA (2015) Parents’ and children’s acceptance of skim chocolate milks sweetened by monk fruit and stevia leaf extracts. J Food Sci 80(5):S1083-1092. https://doi.org/10.1111/1750-3841.12835

    Article  CAS  Google Scholar 

  4. Gardner C, Wylie-Rosett J, Gidding SS, Steffen LM, Johnson RK, Reader D, Lichtenstein AH, American Heart association nutrition committee of the council on nutrition PA, metabolism CoAT, vascular biology CoCDitY, the American D (2012) Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American heart association and the American diabetes association. Circulation 126(4):509–519. https://doi.org/10.1161/CIR.0b013e31825c42ee

    Article  Google Scholar 

  5. Hunter SR, Reister EJ, Cheon E, Mattes RD (2019) Low calorie sweeteners differ in their physiological effects in humans. Nutrients. https://doi.org/10.3390/nu11112717

    Article  Google Scholar 

  6. Peters JC, Wyatt HR, Foster GD, Pan Z, Wojtanowski AC, Vander Veur SS, Herring SJ, Brill C, Hill JO (2014) The effects of water and non-nutritive sweetened beverages on weight loss during a 12-week weight loss treatment program. Obesity (Silver Spring) 22(6):1415–1421. https://doi.org/10.1002/oby.20737

    Article  Google Scholar 

  7. Ahmad SY, Friel JK, MacKay DS (2020) The effect of the artificial sweeteners on glucose metabolism in healthy adults: a randomized, double-blinded, crossover clinical trial. Appl Physiol Nutr Metab 45(6):606–612. https://doi.org/10.1139/apnm-2019-0359

    Article  CAS  Google Scholar 

  8. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, Mann A, Jeyaraman MM, Reid AE, Fiander M, MacKay DS, McGavock J, Wicklow B, Zarychanski R (2017) Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ 189(28):E929–E939. https://doi.org/10.1503/cmaj.161390

    Article  Google Scholar 

  9. Lutsey PL, Steffen LM, Stevens J (2008) Dietary intake and the development of the metabolic syndrome: the atherosclerosis risk in communities study. Circulation 117(6):754–761. https://doi.org/10.1161/CIRCULATIONAHA.107.716159

    Article  Google Scholar 

  10. Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr (2009) Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the multi-ethnic study of atherosclerosis (MESA). Diabetes Care 32(4):688–694. https://doi.org/10.2337/dc08-1799

    Article  CAS  Google Scholar 

  11. Fagherazzi G, Vilier A, Saes Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F (2013) Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the etude epidemiologique aupres des femmes de la mutuelle generale de l’Education nationale-European prospective investigation into cancer and nutrition cohort. Am J Clin Nutr 97(3):517–523. https://doi.org/10.3945/ajcn.112.050997

    Article  CAS  Google Scholar 

  12. Basson AR, Rodriguez-Palacios A, Cominelli F (2021) Artificial sweeteners: history and new concepts on inflammation. Front Nutr 8:746247. https://doi.org/10.3389/fnut.2021.746247

    Article  CAS  Google Scholar 

  13. Ahmad SY, Friel JK, Mackay DS (2020) Effect of sucralose and aspartame on glucose metabolism and gut hormones. Nutr Rev 78(9):725–746. https://doi.org/10.1093/nutrit/nuz099

    Article  Google Scholar 

  14. Meng Y, Li S, Khan J, Dai Z, Li C, Hu X, Shen Q, Xue Y (2021) Sugar- and artificially sweetened beverages consumption linked to type 2 diabetes, cardiovascular diseases, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Nutrients. https://doi.org/10.3390/nu13082636

    Article  Google Scholar 

  15. Rulis AM, Levitt JA (2009) FDA’S food ingredient approval process: safety assurance based on scientific assessment. Regul Toxicol Pharmacol 53(1):20–31. https://doi.org/10.1016/j.yrtph.2008.10.003

    Article  Google Scholar 

  16. Magnuson BA, Roberts A, Nestmann ER (2017) Critical review of the current literature on the safety of sucralose. Food Chem Toxicol 106:324–355. https://doi.org/10.1016/j.fct.2017.05.047

    Article  CAS  Google Scholar 

  17. Plaza-Diaz J, Pastor-Villaescusa B, Rueda-Robles A, Abadia-Molina F, Ruiz-Ojeda FJ (2020) Plausible biological interactions of low- and non-calorie sweeteners with the intestinal microbiota: an update of recent studies. Nutrients. https://doi.org/10.3390/nu12041153

    Article  Google Scholar 

  18. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 104(38):15069–15074. https://doi.org/10.1073/pnas.0706890104

    Article  CAS  Google Scholar 

  19. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514(7521):181–186. https://doi.org/10.1038/nature13793

    Article  CAS  Google Scholar 

  20. Uebanso T, Ohnishi A, Kitayama R, Yoshimoto A, Nakahashi M, Shimohata T, Mawatari K, Takahashi A (2017) Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients. https://doi.org/10.3390/nu9060560

    Article  Google Scholar 

  21. Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S (2013) Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care 36(9):2530–2535. https://doi.org/10.2337/dc12-2221

    Article  CAS  Google Scholar 

  22. Shi Q, Zhu X, Zhou J, Chen L (2018) Low intake of digestible carbohydrates ameliorates the duodenal absorption of carbohydrates in mice with glucose metabolic disorders induced by sucralose. Food Funct 9(12):6236–6244. https://doi.org/10.1039/c8fo02029a

    Article  CAS  Google Scholar 

  23. Kim JY, Prescott J, Kim KO (2017) Emotional responses to sweet foods according to sweet liker status. Food Qual Prefer 59:1–7. https://doi.org/10.1016/j.foodqual.2017.01.013

    Article  Google Scholar 

  24. Glendinning JI, Hart S, Lee H, Maleh J, Ortiz G, Ryu YS, Sanchez A, Shelling S, Williams N (2020) Low-calorie sweeteners cause only limited metabolic effects in mice. Am J Physiol Regul Integr Comp Physiol 318(1):R70–R80. https://doi.org/10.1152/ajpregu.00245.2019

    Article  CAS  Google Scholar 

  25. Shi Q, Zhu X, Deng S (2021) Sweet taste receptor expression and its activation by sucralose to regulate glucose absorption in mouse duodenum. J Food Sci 86(2):540–545. https://doi.org/10.1111/1750-3841.14586

    Article  CAS  Google Scholar 

  26. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A 104(38):15075–15080. https://doi.org/10.1073/pnas.0706678104

    Article  CAS  Google Scholar 

  27. Kojima I, Nakagawa Y (2011) The role of the sweet taste receptor in enteroendocrine cells and pancreatic beta-cells. Diabetes Metab J 35(5):451–457. https://doi.org/10.4093/dmj.2011.35.5.451

    Article  Google Scholar 

  28. Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, Sacks F, Steffen LM, Wylie-Rosett J, American heart association nutrition committee of the council on nutrition PA, metabolism, the council on E, Prevention (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the american heart association. Circulation 120(11):1011–1020. https://doi.org/10.1161/CIRCULATIONAHA.109.192627

    Article  CAS  Google Scholar 

  29. Bomback AS, Derebail VK, Shoham DA, Anderson CA, Steffen LM, Rosamond WD, Kshirsagar AV (2010) Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. Kidney Int 77(7):609–616. https://doi.org/10.1038/ki.2009.500

    Article  CAS  Google Scholar 

  30. Jurgens H, Haass W, Castaneda TR, Schurmann A, Koebnick C, Dombrowski F, Otto B, Nawrocki AR, Scherer PE, Spranger J, Ristow M, Joost HG, Havel PJ, Tschop MH (2005) Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 13(7):1146–1156. https://doi.org/10.1038/oby.2005.136

    Article  Google Scholar 

  31. Lindqvist A, de la Cour CD, Stegmark A, Håkanson R, Erlanson-Albertsson C (2005) Overeating of palatable food is associated with blunted leptin and ghrelin responses. Regul Pept 130(3):123–132. https://doi.org/10.1016/j.regpep.2005.05.002

    Article  CAS  Google Scholar 

  32. Saltiel MY, Kuhre RE, Christiansen CB, Eliasen R, Conde-Frieboes KW, Rosenkilde MM, Holst JJ (2017) Sweet taste receptor activation in the Gut is of limited importance for glucose stimulated GLP1 and GIP secretion. Nutrients. https://doi.org/10.3390/nu9040418

    Article  Google Scholar 

  33. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 99(7):4692–4696. https://doi.org/10.1073/pnas.072090199

    Article  CAS  Google Scholar 

  34. Toft-Nielsen M-B, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK, Holst JJ (2001) Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 86(8):3717–3723. https://doi.org/10.1210/jcem.86.8.7750

    Article  CAS  Google Scholar 

  35. Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE, Meier JJ (2008) Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 57(3):678–687. https://doi.org/10.2337/db07-1124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31972912, 82030026, and 31771666) the Jiangsu Provincial Department of Science and Technology (No. BK20211153), and the Fundamental Research Funds for the Central Universities (No. 020814380173).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XJ, XW, LC and HW; investigation: XW, LC, HW, JX, ZZ, XJ, JW, HZ, YS, YT, QY and QL; writing of the manuscript: XJ, YZ, JL; funding acquisition: XJ, YZ, JL; supervision: XJ, YZ, JL.

Corresponding authors

Correspondence to Yujing Zhang, Jing Li or Xiaohong Jiang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2147 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Cui, L., Wang, H. et al. Impact of dietary sucralose and sucrose-sweetened water intake on lipid and glucose metabolism in male mice. Eur J Nutr 62, 199–211 (2023). https://doi.org/10.1007/s00394-022-02980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02980-2

Keywords

Navigation