Skip to main content

Dietary variety relates to gut microbiota diversity and abundance in humans

Abstract

Purpose

We aim to investigate the relationship between gut microbiota and dietary variety in a Chinese population using Dietary Variety Score (DVS), an index of dietary variety, as little has studied the relationship of dietary variety and gut microbiota in a general population.

Methods

In this cross-sectional study, recruited participants were conducted with face-to-face interview to collect information on 24-h food intake and dietary consumption using a valid food frequency questionnaire. Subjects (n = 128) were divided as high and low DVS groups by the median of DVS after rigorously matching for confounding factors. The gut microbiota was assessed by 16S rRNA sequencing and the correlations between key phylotypes and DVS, Index of Nutritional Quality (INQ) and clinical indices were examined using generalized linear model in negative binomial regression.

Results

Higher score of DVS, INQVB6, INQVE and INQZn exhibited higher α-diversity. DVS was correlated with INQ and six genera. Among the DVS-correlated genera, Turicibacter, Alistipes and Barnesiella were positively correlated with INQVE, INQZn and INQCu, individually or in combination, while Cetobacterium was negatively correlated with INQCu, INQZn and INQVE. The abundance of Coprococcus and Barnesiella increased with the elevated cumulative scores of INQVE, INQVB6 and INQZn. The combination of Alistipes, Roseburia and Barnesiella could moderately predict dietary variety status.

Conclusion

Higher DVS was correlated with higher microbial diversity and more abundance of some potentially beneficial bacteria but with less some potentially pathogenic bacteria. A high variety dietary, therefore, should be recommended in our daily life.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The data sets generated and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Montagnese C, Santarpia L, Buonifacio M, Nardelli A, Caldara AR, Silvestri E, Contaldo F, Pasanisi F (2015) European food-based dietary guidelines: a comparison and update. Nutrition 31(7–8):908–915. https://doi.org/10.1016/j.nut.2015.01.002

    Article  PubMed  Google Scholar 

  2. DeSalvo KB, Olson R, Casavale KO (2016) Dietary guidelines for Americans. JAMA 315(5):457–458. https://doi.org/10.1001/jama.2015.18396

    CAS  Article  PubMed  Google Scholar 

  3. Yang YX, Wang XL, Leong PM, Zhang HM, Yang XG, Kong LZ, Zhai FY, Cheng YY, Guo JS, Su YX (2018) New Chinese dietary guidelines: healthy eating patterns and food-based dietary recommendations. Asia Pac J Clin Nutr 27(4):908–913. https://doi.org/10.6133/apjcn.072018.03

    CAS  Article  PubMed  Google Scholar 

  4. Randall E, Nichaman MZ, Contant CF Jr (1985) Diet diversity and nutrient intake. J Am Diet Assoc 85(7):830–836

    CAS  Article  Google Scholar 

  5. Foote JA, Murphy SP, Wilkens LR, Basiotis PP, Carlson A (2004) Dietary variety increases the probability of nutrient adequacy among adults. J Nutr 134(7):1779–1785. https://doi.org/10.1093/jn/134.7.1779

    CAS  Article  PubMed  Google Scholar 

  6. Vandevijvere S, De Vriese S, Huybrechts I, Moreau M, Van Oyen H (2010) Overall and within-food group diversity are associated with dietary quality in Belgium. Public Health Nutr 13(12):1965–1973. https://doi.org/10.1017/s1368980010001606

    Article  PubMed  Google Scholar 

  7. Amato M, Bonomi A, Laguzzi F, Veglia F, Tremoli E, Werba JP, Giroli MG (2020) Overall dietary variety and adherence to the Mediterranean diet show additive protective effects against coronary heart disease. Nutr Metab Cardiovasc Dis 30(8):1315–1321. https://doi.org/10.1016/j.numecd.2020.04.002

    Article  PubMed  Google Scholar 

  8. Mozaffari H, Hosseini Z, Lafrenière J, Conklin AI (2021) The role of dietary diversity in preventing metabolic-related outcomes: findings from a systematic review. Obes Rev 22(6):e13174. https://doi.org/10.1111/obr.13174

    Article  PubMed  Google Scholar 

  9. Rifas-Shiman SL, Willett WC, Lobb R, Kotch J, Dart C, Gillman MW (2001) PrimeScreen, a brief dietary screening tool: reproducibility and comparability with both a longer food frequency questionnaire and biomarkers. Public Health Nutr 4(2):249–254. https://doi.org/10.1079/phn200061

    CAS  Article  PubMed  Google Scholar 

  10. Yamamoto K, Tsuji T, Yamasaki K, Momoki C, Yasui Y, Habu D (2020) Scoring methods used in the dietary variety score survey to predict malnutrition among older patients receiving home care. Int J Older People Nurs 15(3):e12301. https://doi.org/10.1111/opn.12301

    Article  PubMed  Google Scholar 

  11. Tung HH, Tseng LH, Wei J, Lin CH, Wang TJ, Liang SY (2011) Food pattern and quality of life in metabolic syndrome patients who underwent coronary artery bypass grafting in Taiwan. Eur J Cardiovasc Nurs 10(4):205–212. https://doi.org/10.1016/j.ejcnurse.2010.05.004

    Article  PubMed  Google Scholar 

  12. Randall E, Marshall J, Graham S, Brasure J (1989) Frequency of food use data and the multidimensionality of diet. J Am Diet Assoc 89(8):1070–1075

    CAS  Article  Google Scholar 

  13. Shin Y, Kim Y (2020) Psychological stress accompanied by a low-variety diet is positively associated with type 2 diabetes in middle-aged adults. Nutrients. https://doi.org/10.3390/nu12092612

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hatløy A, Torheim LE, Oshaug A (1998) Food variety—a good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali. West Afr Eur J Clin Nutr 52(12):891–898. https://doi.org/10.1038/sj.ejcn.1600662

    Article  Google Scholar 

  15. Kant AK, Schatzkin A, Ziegler RG (1995) Dietary diversity and subsequent cause-specific mortality in the NHANES I epidemiologic follow-up study. J Am Coll Nutr 14(3):233–238. https://doi.org/10.1080/07315724.1995.10718501

    CAS  Article  PubMed  Google Scholar 

  16. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    CAS  Article  PubMed  Google Scholar 

  17. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. https://doi.org/10.1126/science.1208344

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Sonnenburg JL, Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64. https://doi.org/10.1038/nature18846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 4(2):232–241. https://doi.org/10.1038/ismej.2009.112

    CAS  Article  PubMed  Google Scholar 

  20. Nie Q, Chen H, Hu J, Fan S, Nie S (2019) Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit Rev Food Sci Nutr 59(6):848–863. https://doi.org/10.1080/10408398.2018.1536646

    CAS  Article  PubMed  Google Scholar 

  21. Laitinen K, Mokkala K (2019) Overall dietary quality relates to gut microbiota diversity and abundance. Int J Mol Sci. https://doi.org/10.3390/ijms20081835

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Ajami NJ, El-Serag HB, Hair C, Graham DY, White DL, Chen L, Wang Z, Plew S, Kramer J, Cole R, Hernaez R, Hou J, Husain N, Jarbrink-Sehgal ME, Kanwal F, Ketwaroo G, Natarajan Y, Shah R, Velez M, Mallepally N, Petrosino JF, Jiao L (2019) Dietary quality and the colonic mucosa-associated gut microbiome in humans. Am J Clin Nutr 110(3):701–712. https://doi.org/10.1093/ajcn/nqz139

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heiman ML, Greenway FL (2016) A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 5(5):317–320. https://doi.org/10.1016/j.molmet.2016.02.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. https://doi.org/10.1152/physrev.00045.2009

    CAS  Article  PubMed  Google Scholar 

  25. Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y (2020) Host variables confound gut microbiota studies of human disease. Nature 587(7834):448–454. https://doi.org/10.1038/s41586-020-2881-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Abdollahpour I, Nedjat S, Salimi Y, Mansournia MA, Vahid F, Weinstock-Guttman B (2020) The role of dietary antioxidant index and index of nutritional quality in MS onset: finding from an Iranian population-based incident case-control study. Nutr Neuros. https://doi.org/10.1080/1028415x.2020.1755792

    Article  Google Scholar 

  27. Vahid F, Hekmatdoost A, Mirmajidi S, Doaei S, Rahmani D, Faghfoori Z (2019) Association between index of nutritional quality and nonalcoholic fatty liver disease: the role of vitamin D and B group. Am J Med Sci 358(3):212–218. https://doi.org/10.1016/j.amjms.2019.06.008

    Article  PubMed  Google Scholar 

  28. Manore MM (2005) Exercise and the Institute of Medicine recommendations for nutrition. Curr Sports Med Rep 4(4):193–198. https://doi.org/10.1097/01.csmr.0000306206.72186.00

    Article  PubMed  Google Scholar 

  29. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107(44):18933–18938. https://doi.org/10.1073/pnas.1007028107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ruiz-Saavedra S, Salazar N, Suárez A, de Los Reyes-Gavilán CG, Gueimonde M, González S (2020) Comparison of different dietary indices as predictors of inflammation, oxidative stress and intestinal microbiota in middle-aged and elderly subjects. Nutrients. https://doi.org/10.3390/nu12123828

  31. Koponen KK, Salosensaari A, Ruuskanen MO, Havulinna AS, Männistö S, Jousilahti P, Palmu J, Salido R, Sanders K, Brennan C, Humphrey GC, Sanders JG, Meric G, Cheng S, Inouye M, Jain M, Niiranen TJ, Valsta LM, Knight R, Salomaa VV (2021) Associations of healthy food choices with gut microbiota profiles. Am J Clin Nutr 114(2):605–616. https://doi.org/10.1093/ajcn/nqab077

    Article  PubMed  PubMed Central  Google Scholar 

  32. Touchefeu Y, Duchalais E, Bruley des Varannes S, Alameddine J, Mirallie E, Matysiak-Budnik T, Le Bastard Q, Javaudin F, Rimbert M, Jotereau F, Montassier E (2021) Concomitant decrease of double-positive lymphocyte population CD4CD8αα and Faecalibacterium prausnitzii in patients with colorectal cancer. Eur J Gastroenterol Hepatol 32(2):149–156. https://doi.org/10.1097/meg.0000000000001842

  33. Grigor’eva IN (2020) Gallstone disease, obesity and the firmicutes/bacteroidetes ratio as a possible biomarker of gut dysbiosis. J Pers Med. https://doi.org/10.3390/jpm11010013

    Article  PubMed  PubMed Central  Google Scholar 

  34. Borton MA, Sabag-Daigle A, Wu J, Solden LM, O’Banion BS, Daly RA, Wolfe RA, Gonzalez JF, Wysocki VH, Ahmer BMM, Wrighton KC (2017) Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. Microbiome 5(1):47. https://doi.org/10.1186/s40168-017-0264-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP, Routy B, Jacquelot N, Apetoh L, Becharef S, Rusakiewicz S, Langella P, Sokol H, Kroemer G, Enot D, Roux A, Eggermont A, Tartour E, Johannes L, Woerther PL, Chachaty E, Soria JC, Golden E, Formenti S, Plebanski M, Madondo M, Rosenstiel P, Raoult D, Cattoir V, Boneca IG, Chamaillard M, Zitvogel L (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931–943. https://doi.org/10.1016/j.immuni.2016.09.009

    CAS  Article  PubMed  Google Scholar 

  36. Fan HN, Zhu P, Zhang J, Zhu JS (2021) Mucosal microbiome dysbiosis associated with duodenum bulb inflammation. Microb Pathog 150:104711. https://doi.org/10.1016/j.micpath.2020.104711

    CAS  Article  PubMed  Google Scholar 

  37. Shaw KA, Bertha M, Hofmekler T, Chopra P, Vatanen T, Srivatsa A, Prince J, Kumar A, Sauer C, Zwick ME, Satten GA, Kostic AD, Mulle JG, Xavier RJ, Kugathasan S (2016) Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genom Med 8(1):75. https://doi.org/10.1186/s13073-016-0331-y

    CAS  Article  Google Scholar 

  38. Nishino K, Nishida A, Inoue R, Kawada Y, Ohno M, Sakai S, Inatomi O, Bamba S, Sugimoto M, Kawahara M, Naito Y, Andoh A (2018) Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol 53(1):95–106. https://doi.org/10.1007/s00535-017-1384-4

    Article  PubMed  Google Scholar 

  39. Kim S, Rigatto K, Gazzana MB, Knorst MM, Richards EM, Pepine CJ, Raizada MK (2020) Altered gut microbiome profile in patients with pulmonary arterial hypertension. hypertension (Dallas, Tex: 1979) 75(4):1063–1071. https://doi.org/10.1161/hypertensionaha.119.14294

  40. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4(4):623–632. https://doi.org/10.1038/s41564-018-0337-x

    CAS  Article  PubMed  Google Scholar 

  41. Chen Y, Guo KM, Nagy T, Guo TL (2020) Chronic oral exposure to glycated whey proteins increases survival of aged male NOD mice with autoimmune prostatitis by regulating the gut microbiome and anti-inflammatory responses. Food Funct 11(1):153–162. https://doi.org/10.1039/c9fo01740b

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Companys J, Gosalbes MJ, Pla-Pagà L, Calderón-Pérez L, Llauradó E, Pedret A, Valls RM, Jiménez-Hernández N, Sandoval-Ramirez BA, Del Bas JM, Caimari A, Rubió L, Solà R (2021) Gut microbiota profile and its association with clinical variables and dietary intake in overweight/obese and lean subjects: a cross-sectional study. Nutrients. https://doi.org/10.3390/nu13062032

  43. Rajilić-Stojanović M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, de Vos WM (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141(5):1792–1801. https://doi.org/10.1053/j.gastro.2011.07.043

    CAS  Article  PubMed  Google Scholar 

  44. Barandouzi ZA, Starkweather AR, Henderson WA, Gyamfi A, Cong XS (2020) Altered composition of gut microbiota in depression: a systematic review. Front Psych 11:541. https://doi.org/10.3389/fpsyt.2020.00541

    Article  Google Scholar 

  45. Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, Murphy MP, Sokola BS, Bauer B, Hartz AMS, Lin AL (2018) Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 8(1):6670. https://doi.org/10.1038/s41598-018-25190-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We think the nurses at the healthcare center of the Third Affiliated Hospital of Guangxi Medical University for sample collection.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 82060593, 81660540) and Natural Science Foundation of Guangxi Province (No. 2018GXNSFDA050019).

Author information

Authors and Affiliations

Authors

Contributions

RL and DL designed the research. XH, YG, WC, QH and XW conducted the field survey and analyzed the data. XH, YG and WC wrote the manuscript, and RL and ZH reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dan Li or Rui Lin.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

This study was approved by the Ethics Committee of Guangxi Medical University (No. 20200069).

Informed consent

All participants signed the written informed consent before data collection.

Consent for participation

All the participants signed a written informed consent before data collection in the study.

Consent for publication

All authors have read and approved the final version of the submitted manuscript.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Gao, Y., Chen, W. et al. Dietary variety relates to gut microbiota diversity and abundance in humans. Eur J Nutr (2022). https://doi.org/10.1007/s00394-022-02929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00394-022-02929-5

Keywords

  • Dietary diversity
  • Dietary variety score
  • Index of nutritional quality
  • Gut microbiota
  • Cumulative effect