Skip to main content

Advertisement

Log in

Associations of coffee/caffeine consumption with postmenopausal breast cancer risk and their interactions with postmenopausal hormone use

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2023

This article has been updated

Abstract

Purpose

We investigated the association of coffee and caffeine with breast cancer (BCa) risk, overall and by ER/PR status. We also examined potential interactions of coffee and caffeine with postmenopausal hormone use.

Methods

Our study included 77,688 postmenopausal participants from the Women’s Health Initiative observational study cohort without a history of any cancer at baseline (except non-melanoma skin) and with valid Food Frequency Questionnaire data and complete data on dietary caffeine. Regular coffee (none, 1, 2–3, 4–5, and ≥ 6 cups/day) and caffeine (tertiles) were assessed at baseline. Information on BCa risk factors was collected at baseline. The associations were examined using survival analysis, accounting for death as a competing risk.

Results

The median follow-up time for our cohort was 18.3 years. During the follow-up, 5005 women developed invasive breast cancer. In multivariable analysis, coffee was not associated with the overall invasive BCa risk. Higher caffeine intake was mildly associated with increased BCa risk (2nd vs. 1st tertile SHR = 1.10, 95% CI 1.03–1.18, 3rd vs. 1st tertile SHR–1.05, 95% CI 0.98–1.13, overall p = 0.03). We found no interaction of coffee/caffeine with postmenopausal hormone use (p interaction = 0.44 and 0.42, respectively). In the exploratory analysis by ER/PR status, we found a positive association of caffeine with ER+ /PR+ BCa (2nd vs. 1st tertile SHR = 1.17, 95% CI 1.07–1.28, 3rd vs. 1st tertile SHR = 1.13, 95% CI 1.03–1.24, overall p = 0.002); no associations were observed for ER−/PR− tumors. Coffee was not associated with the risk of ER+ /PR+ or ER−/PR− tumors.

Conclusion

We found no associations of coffee with BCa risk, overall and for ER/PR-defined tumor subtypes. The higher caffeine consumption was mildly and positively associated with the overall BCa risk and with ER+ /PR+ tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Publicly available published data are cited in this manuscript. Additional access to de-identified datasets is available pending authorized MUA and WHI/P&P approved manuscript proposal.

Code availability

Code will be made available on request.

Change history

References

  1. Baker JA, Beehler GP, Sawant AC, Jayaprakash V, McCann SE, Moysich KB (2006) Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J Nutr 136(1):166–171

    Article  CAS  PubMed  Google Scholar 

  2. Lowcock EC, Cotterchio M, Anderson LN, Boucher BA, El-Sohemy A (2013) High coffee intake, but not caffeine, is associated with reduced estrogen receptor negative and postmenopausal breast cancer risk with no effect modification by CYP1A2 genotype. Nutr Cancer 65(3):398–409

    Article  CAS  PubMed  Google Scholar 

  3. Oh JK, Sandin S, Strom P, Lof M, Adami HO, Weiderpass E (2015) Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. Int J Cancer 137(8):1979–1989

    Article  CAS  PubMed  Google Scholar 

  4. Bhoo-Pathy N, Peeters PHM, Uiterwaal CSPM, Bueno-de-Mesquita HB, Bulgiba AM, Bech BH, Overvad K, Tjønneland A, Olsen A, Clavel-Chapelon F, Fagherazzi G, Perquier F, Teucher B, Kaaks R, Schütze M, Boeing H, Lagiou P, Orfanos P, Trichopoulou A, Agnoli C, Mattiello A, Palli D, Tumino R, Sacerdote C, van Duijnhoven FJB, Braaten T, Lund E, Skeie G, Redondo M-L, Buckland G, Pérez MJS, Chirlaque M-D, Ardanaz E, Amiano P, Wirfält E, Wallström P, Johansson I, Nilsson LM, Khaw K-T, Wareham N, Allen NE, Key TJ, Rinaldi S, Romieu I, Gallo V, Riboli E, van Gils CH (2015) Coffee and tea consumption and risk of pre- and postmenopausal breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Breast Cancer Res 17(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lafranconi A, Micek A, De Paoli P, Bimonte S, Rossi P, Quagliariello V, Berretta M (2018) Coffee intake decreases risk of postmenopausal breast cancer: a dose-response meta-analysis on prospective cohort studies. Nutrients 10(2):112

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sisti JS, Hankinson SE, Caporaso NE, Gu F, Tamimi RM, Rosner B, Xu X, Ziegler R, Eliassen AH (2015) Caffeine, coffee, and tea intake and urinary estrogens and estrogen metabolites in premenopausal women. Cancer Epidemiol Biomarkers Prev 24(8):1174–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kotsopoulos J, Eliassen AH, Missmer SA, Hankinson SE, Tworoger SS (2009) Relationship between caffeine intake and plasma sex hormone concentrations in premenopausal and postmenopausal women. Cancer 115(12):2765–2774

    Article  CAS  PubMed  Google Scholar 

  8. Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs DR, Blomhoff R (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr 84(1):95–135

    Article  CAS  PubMed  Google Scholar 

  9. Rahmioglu N, Heaton J, Clement G, Gill R, Surdulescu G, Zlobecka K, Hodgkiss D, Ma Y, Hider RC, Smith NW, Ahmadi KR (2011) Genetic epidemiology of induced CYP3A4 activity. Pharmacogenet Genom 21(10):642–651

    Article  CAS  Google Scholar 

  10. Lee WJ, Zhu BT (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27(2):269–277

    Article  CAS  PubMed  Google Scholar 

  11. Pozner J, Papatestas AE, Fagerstrom R, Schwartz I, Saevitz J, Feinberg M, Aufses AH Jr (1986) Association of tumor differentiation with caffeine and coffee intake in women with breast cancer. Surgery 100(3):482–488

    CAS  PubMed  Google Scholar 

  12. Ganmaa D, Willett WC, Li TY, Feskanich D, van Dam RM, Lopez-Garcia E, Hunter DJ, Holmes MD (2008) Coffee, tea, caffeine, and risk of breast cancer: a twenty two-year follow-up. Int J Cancer J Int du Cancer 122(9):2071–2076

    Article  CAS  Google Scholar 

  13. Toniolo PG, Levitz M, Zeleniuch-Jacquotte A, Banerjee S, Koenig KL, Shore RE, Strax P, Pasternack BS (1995) A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J Natl Cancer Inst 87(3):190–197

    Article  CAS  PubMed  Google Scholar 

  14. Yu H, Shu XO, Shi R, Dai Q, Jin F, Gao YT, Li BD, Zheng W (2003) Plasma sex steroid hormones and breast cancer risk in Chinese women. Int J Cancer 105(1):92–97

    Article  CAS  PubMed  Google Scholar 

  15. Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96(24):1856–1865

    Article  CAS  PubMed  Google Scholar 

  16. Hankinson SE, Eliassen AH (2007) Endogenous estrogen, testosterone and progesterone levels in relation to breast cancer risk. J Steroid Biochem Mol Biol 106(1–5):24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arpino G, Bardou VJ, Clark GM, Elledge RM (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6(3):R149-156

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502

    Article  CAS  PubMed  Google Scholar 

  19. Phipps AI, Li CI, Kerlikowske K, Barlow WE, Buist DS (2010) Risk factors for ductal, lobular, and mixed ductal-lobular breast cancer in a screening population. Cancer Epidemiol Biomarkers Prev 19(6):1643–1654

    Article  PubMed  PubMed Central  Google Scholar 

  20. Putti TC, El-Rehim DM, Rakha EA, Paish CE, Lee AH, Pinder SE, Ellis IO (2005) Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol 18(1):26–35

    Article  CAS  PubMed  Google Scholar 

  21. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colditz GA, Rosner BA, Chen WY, Holmes MD, Hankinson SE (2004) Risk factors for breast cancer according to estrogen and progesterone receptor status. J Natl Cancer Inst 96(3):218–228

    Article  CAS  PubMed  Google Scholar 

  23. Kwan M, Kushi L, Weltzien E, Maring B, Kutner S, Fulton R, Lee M, Ambrosone C, Caan B (2009) Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res 11(3):R31

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rusiecki JA, Holford TR, Zahm SH, Zheng T (2005) Breast cancer risk factors according to joint estrogen receptor and progesterone receptor status. Cancer Detect Prev 29(5):419–426

    Article  CAS  PubMed  Google Scholar 

  25. Yang XR, Sherman ME, Rimm DL, Lissowska J, Brinton LA, Peplonska B, Hewitt SM, Anderson WF, Szeszenia-Dabrowska N, Bardin-Mikolajczak A, Zatonski W, Cartun R, Mandich D, Rymkiewicz G, Ligaj M, Lukaszek S, Kordek R, Garcia-Closas M (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16(3):439–443

    Article  CAS  PubMed  Google Scholar 

  26. Bhoo-Pathy N, Peeters PH, Uiterwaal CS, Bueno-de-Mesquita HB, Bulgiba AM, Bech BH, Overvad K, Tjonneland A, Olsen A, Clavel-Chapelon F, Fagherazzi G, Perquier F, Teucher B, Kaaks R, Schutze M, Boeing H, Lagiou P, Orfanos P, Trichopoulou A, Agnoli C, Mattiello A, Palli D, Tumino R, Sacerdote C, van Duijnhoven FJ, Braaten T, Lund E, Skeie G, Redondo ML, Buckland G, Perez MJ, Chirlaque MD, Ardanaz E, Amiano P, Wirfalt E, Wallstrom P, Johansson I, Nilsson LM, Khaw KT, Wareham N, Allen NE, Key TJ, Rinaldi S, Romieu I, Gallo V, Riboli E, van Gils CH (2015) Coffee and tea consumption and risk of pre- and postmenopausal breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Breast Cancer Res 17:15

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosendahl AH, Perks CM, Zeng L, Markkula A, Simonsson M, Rose C, Ingvar C, Holly JM, Jernstrom H (2015) Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin Cancer Res 21(8):1877–1887

    Article  CAS  PubMed  Google Scholar 

  28. Design of the Women’s Health Initiative clinical trial and observational study. The Women’s Health Initiative Study Group (1998). Control Clin Trials 19(1):61–109.

  29. Rhee JJ, Qin F, Hedlin HK, Chang TI, Bird CE, Zaslavsky O, Manson JE, Stefanick ML, Winkelmayer WC (2016) Coffee and caffeine consumption and the risk of hypertension in postmenopausal women. Am J Clin Nutr 103(1):210–217

    Article  CAS  PubMed  Google Scholar 

  30. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T (1999) Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol 9(3):178–187

    Article  CAS  PubMed  Google Scholar 

  31. Chlebowski RT, Manson JE, Anderson GL, Cauley JA, Aragaki AK, Stefanick ML, Lane DS, Johnson KC, Wactawski-Wende J, Chen C, Qi L, Yasmeen S, Newcomb PA, Prentice RL (2013) Estrogen plus progestin and breast cancer incidence and mortality in the Women’s Health Initiative observational study. J National Cancer Instit 105(8):526–535

    Article  CAS  Google Scholar 

  32. Driscoll I, Shumaker SA, Snively BM, Margolis KL, Manson JE, Vitolins MZ, Rossom RC, Espeland MA (2016) Relationships between caffeine intake and risk for probable dementia or global cognitive impairment: the Women’s Health Initiative memory study. J Gerontol 71(12):1596–1602

    Article  CAS  Google Scholar 

  33. Nutrition Coordinating Center at the University of Minnesota M. Nutrition Data System for Research (NDSR). Minneapolis, MN: University of Minnesota; 2013.

  34. Grams ME, Juraschek SP, Selvin E, Foster MC, Inker LA, Eckfeldt JH, Levey AS, Coresh J (2013) Trends in the prevalence of reduced GFR in the United States: a comparison of creatinine- and cystatin C-based estimates. Am J Kidney Dis 62(2):253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Young JH, Klag MJ, Muntner P, Whyte JL, Pahor M, Coresh J (2002) Blood pressure and decline in kidney function: findings from the systolic hypertension in the elderly program (SHEP). J Am Soc Nephrol 13(11):2776–2782

    Article  CAS  PubMed  Google Scholar 

  36. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL (2003) Implementation of the Women’s Health Initiative study design. Ann Epidemiol 13(9 Suppl):S5-17

    Article  PubMed  Google Scholar 

  37. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509

    Article  Google Scholar 

  38. Austin PC, Fine JP (2017) Practical recommendations for reporting fine-gray model analyses for competing risk data. Stat Med 36(27):4391–4400

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Buuren S (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 16(3):219–242

    Article  PubMed  Google Scholar 

  40. Rubin DB (1987) Multiple imputation for nonresponse in surveys. John Wiley & Sons, New York

    Book  Google Scholar 

  41. Verster JC, Koenig J (2018) Caffeine intake and its sources: a review of national representative studies. Crit Rev Food Sci Nutr 58(8):1250–1259

    Article  CAS  PubMed  Google Scholar 

  42. Yaghjyan L, Colditz G, Rosner B, Rich S, Egan K, Tamimi RM (2020) Adolescent caffeine consumption and mammographic breast density in premenopausal women. Eur J Nutr 59(4):1633–1639

    Article  CAS  PubMed  Google Scholar 

  43. Folsom AR, McKenzie DR, Bisgard KM, Kushi LH, Sellers TA (1993) No association between caffeine intake and postmenopausal breast cancer incidence in the Iowa Women’s Health Study. Am J Epidemiol 138(6):380–383

    Article  CAS  PubMed  Google Scholar 

  44. Fagherazzi G, Touillaud MS, Boutron-Ruault MC, Clavel-Chapelon F, Romieu I (2011) No association between coffee, tea or caffeine consumption and breast cancer risk in a prospective cohort study. Public Health Nutr 14(7):1315–1320

    Article  PubMed  Google Scholar 

  45. Ishitani K, Lin J, Manson JE, Buring JE, Zhang SM (2008) Caffeine consumption and the risk of breast cancer in a large prospective cohort of women. Arch Intern Med 168(18):2022–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith SJ, Deacon JM, Chilvers CE (1994) Alcohol, smoking, passive smoking and caffeine in relation to breast cancer risk in young women. UK national case-control study group. Br J Cancer 70(1):112–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larsson SC, Bergkvist L, Wolk A (2009) Coffee and black tea consumption and risk of breast cancer by estrogen and progesterone receptor status in a Swedish cohort. Cancer Causes Control 20(10):2039–2044

    Article  PubMed  Google Scholar 

  48. Ganmaa D, Willett WC, Li TY, Feskanich D, van Dam RM, Lopez-Garcia E, Hunter DJ, Holmes MD (2008) Coffee, tea, caffeine and risk of breast cancer: a 22-year follow-up. Int J Cancer 122(9):2071–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang N, Zhou B, Wang B, Yu R (2009) Coffee consumption and risk of breast cancer: a metaanalysis. Am J Obstet Gynecol 200(3):290e291-299

    Article  Google Scholar 

  50. Jiang W, Wu Y, Jiang X (2013) Coffee and caffeine intake and breast cancer risk: an updated dose-response meta-analysis of 37 published studies. Gynecol Oncol 129(3):620–629

    Article  CAS  PubMed  Google Scholar 

  51. Yaghjyan L, Rich S, Mao L, Mai V, Egan KM (2018) Interactions of coffee consumption and postmenopausal hormone use in relation to breast cancer risk in UK Biobank. Cancer Causes Control 29(6):519–525

    Article  PubMed  Google Scholar 

  52. Maersk M, Belza A, Stødkilde-Jørgensen H, Ringgaard S, Chabanova E, Thomsen H, Pedersen SB, Astrup A, Richelsen B (2012) Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95(2):283–289

    Article  CAS  PubMed  Google Scholar 

  53. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Investig 119(5):1322–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Doyle SL, Donohoe CL, Lysaght J, Reynolds JV (2012) Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc 71(1):181–189

    Article  CAS  PubMed  Google Scholar 

  55. Augustin LS, Kendall CW, Jenkins DJ, Willett WC, Astrup A, Barclay AW, Björck I, Brand-Miller JC, Brighenti F, Buyken AE (2015) Glycemic index, glycemic load and glycemic response: an International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis 25(9):795–815

    Article  CAS  PubMed  Google Scholar 

  56. Larsson SC, Mantzoros CS, Wolk A (2007) Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 121(4):856–862

    Article  CAS  PubMed  Google Scholar 

  57. Lajous M, Boutron-Ruault M-C, Fabre A, Clavel-Chapelon F, Romieu I (2008) Carbohydrate intake, glycemic index, glycemic load, and risk of postmenopausal breast cancer in a prospective study of French women. Am J Clin Nutr 87(5):1384–1391

    Article  CAS  PubMed  Google Scholar 

  58. Liu S, Manson JE, Buring JE, Stampfer MJ, Willett WC, Ridker PM (2002) Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am J Clin Nutr 75(3):492–498

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Lee I-M, Tworoger SS, Buring JE, Ridker PM, Rosner B, Hankinson SE (2015) Plasma C-reactive protein and risk of breast cancer in two prospective studies and a meta-analysis. Cancer Epidemiol Prev Biomark 24(8):1199–1206

    Article  CAS  Google Scholar 

  60. Hu FB, Rimm E, Smith-Warner SA, Feskanich D, Stampfer MJ, Ascherio A, Sampson L, Willett WC (1999) Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 69(2):243–249

    Article  CAS  PubMed  Google Scholar 

  61. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122(1):51–65

    Article  CAS  PubMed  Google Scholar 

  62. Yaghjyan L, Colditz G, Rosner B, Gasparova A, Tamimi RM (2018) Associations of coffee consumption and caffeine intake with mammographic breast density. Breast Cancer Res Treat 169(1):115–123

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like acknowledge the following WHI Principal Investigators and academic medical centers. Program office: Jacques Rossouw, Shari Ludlam, Joan McGowan, Leslie Ford, and Nancy Geller (National Heart, Lung, and Blood Institute, Bethesda, Maryland); Clinical Coordinating Center: Garnet Anderson, Ross Prentice, Andrea LaCroix, and Charles Kooperberg (Fred Hutchinson Cancer Research Center, Seattle, WA); Investigators and Academic Centers: JoAnn E. Manson (Brigham and Women’s Hospital, Harvard Medical School, Boston, MA); Barbara V. Howard (MedStar Health Research Institute/Howard University, Washington, DC); Marcia L. Stefanick (Stanford Prevention Research Center, Stanford, CA); Rebecca Jackson (The Ohio State University, Columbus, OH); Cynthia A. Thomson (University of Arizona, Tucson/Phoenix, AZ); Jean Wactawski-Wende (University at Buffalo, Buffalo, NY); Marian Limacher (University of Florida, Gainesville/Jacksonville, FL); Robert Wallace (University of Iowa, Iowa City/Davenport, IA); Lewis Kuller (University of Pittsburgh, Pittsburgh, PA); Sally Shumaker (Wake Forest University School of Medicine, Winston-Salem, NC).

Funding

This work was supported by the National Cancer Institute (K01CA21845701A1 to ASF and K12CA133250 to DA), the National Heart, Lung, and Blood Institute (K01HL142848 to KB), University of Arizona Health Sciences, Strategic Priorities Faculty Initiative Grant (KB), and University of Arizona Sarver Heart Center (KB). The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusine Yaghjyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The WHI study protocol was reviewed and approved by human subjects review committees at all clinics.

Consent to participate

All participants provided written informed consent.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghjyan, L., McLaughlin, E., Lehman, A. et al. Associations of coffee/caffeine consumption with postmenopausal breast cancer risk and their interactions with postmenopausal hormone use. Eur J Nutr 61, 3449–3459 (2022). https://doi.org/10.1007/s00394-022-02899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02899-8

Keywords

Navigation