Skip to main content
Log in

A prospective study of carbohydrate intake and risk of all-cause and specific-cause mortality

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To investigate the associations between carbohydrate intake and the risk of overall and specific-cause mortality in a prospective cohort study.

Methods

Diet was measured using 24 h dietary recalls. Underlying cause of death was identified through linkage to the National Death Index. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression.

Results

During a median follow-up of 7.1 years among 35,692 participants who aged 20–85 years, a total of 3854 deaths [783 cardiovascular disease (CVD)-specific and 884 cancer-specific death] were identified. Carbohydrate intake was not associated with risk of overall mortality (multivariable-adjusted HR comparing extreme quartiles 1.03, 95% CI 0.94, 1.13, ptrend = 0.799), while higher fiber intake was associated with lower mortality risk (HR 0.86, 95% CI 0.77, 0.95, ptrend = 0.004). Replacing 5% of energy from carbohydrate with both plant fat and plant protein was associated with 13% (95% CI 8%, 17%) and 13% (95% CI 3%, 22%) lower risk of total and CVD mortality, respectively. Whereas a positive or null association was found when replacing carbohydrate with both animal fat and animal protein. Higher carbohydrate-to-fiber ratio was associated with increased risk of overall (HR 1.20, 95% CI 1.09, 1.33, ptrend < 0.001) and cancer-specific (HR 1.17, 95% CI 0.95, 1.44, ptrend = 0.031) mortality.

Conclusions

Our findings suggested that high fiber diet or diet with low carbohydrate-to-fiber ratio was associated with lower long-term death risk, and provided evidence for the health benefit from dietary substitution of both plant fat and plant protein for carbohydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data described in the manuscript, code book, and analytic code are publicly and freely available without restriction at https://www.cdc.gov/nchs/nhanes/index.htm.

Code availability

SAS version 9.4.

References

  1. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Blüher M, Stumvoll M, Stampfer MJ, Dietary Intervention Randomized Controlled Trial (DIRECT) Group (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359(3):229–241. https://doi.org/10.1056/NEJMoa0708681

    Article  CAS  PubMed  Google Scholar 

  2. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Sato M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: a meta-analysis. Diabetes Care 32(5):959–965. https://doi.org/10.2337/dc08-1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirk JK, Graves DE, Craven TE, Lipkin EW, Austin M, Margolis KL (2008) Restricted-carbohydrate diets in patients with type 2 diabetes: a meta-analysis. J Am Diet Assoc 108(1):91–100. https://doi.org/10.1016/j.jada.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  4. Hite AH, Berkowitz VG, Berkowitz K (2011) Low-carbohydrate diet review: shifting the paradigm. Nutr Clin Pract 26(3):300–308. https://doi.org/10.1177/0884533611405791

    Article  PubMed  Google Scholar 

  5. Miyazawa I, Miura K, Miyagawa N, Kondo K, Kadota A, Okuda N, Fujiyoshi A, Chihara I, Nakamura Y, Hozawa A, Nakamura Y, Kita Y, Yoshita K, Okamura T, Okayama A, Ueshima H, group NDR (2020) Relationship between carbohydrate and dietary fibre intake and the risk of cardiovascular disease mortality in Japanese: 24-year follow-up of NIPPON DATA80. Eur J Clin Nutr 74(1):67–76. https://doi.org/10.1038/s41430-019-0424-y

    Article  CAS  PubMed  Google Scholar 

  6. liDehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, Iqbal R, Kumar R, Wentzel-Viljoen E, Rosengren A, Amma LI, Avezum A, Chifamba J, Diaz R, Khatib R, Lear S, Lopez-Jaramillo P, Liu X, Gupta R, Mohammadifard N, Gao N, Oguz A, Ramli AS, Seron P, Sun Y, Szuba A, Tsolekile L, Wielgosz A, Yusuf R, Hussein Yusufali A, Teo KK, Rangarajan S, Dagenais G, Bangdiwala SI, Islam S, Anand SS, Yusuf S, Prospective Urban Rural Epidemiology (PURE) study investigators (2017) Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390(10107):2050–2062. https://doi.org/10.1016/S0140-6736(17)32252-3

    Article  Google Scholar 

  7. Seidelmann SB, Claggett B, Cheng S, Henglin M, Shah A, Steffen LM, Folsom AR, Rimm EB, Willett WC, Solomon SD (2018) Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 3(9):e419–e428. https://doi.org/10.1016/S2468-2667(18)30135-X

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ho FK, Gray SR, Welsh P, Petermann-Rocha F, Foster H, Waddell H, Anderson J, Lyall D, Sattar N, Gill JMR, Mathers JC, Pell JP, Celis-Morales C (2020) Associations of fat and carbohydrate intake with cardiovascular disease and mortality: prospective cohort study of UK Biobank participants. BMJ 368:m688. https://doi.org/10.1136/bmj.m688

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kwon YJ, Lee HS, Park JY, Lee JW (2020) Associating intake proportion of carbohydrate, fat, and protein with all-cause mortality in Korean adults. Nutrients 12(10):3208. https://doi.org/10.3390/nu12103208

    Article  CAS  PubMed Central  Google Scholar 

  10. Fernandez-Lazaro CI, Zazpe I, Santiago S, Toledo E, Barberia-Latasa M, Martinez-Gonzalez MA (2021) Association of carbohydrate quality and all-cause mortality in the SUN Project: a prospective cohort study. Clin Nutr 40(4):2364–2372. https://doi.org/10.1016/j.clnu.2020.10.029

    Article  CAS  PubMed  Google Scholar 

  11. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD, American heart association strategic planning Task F, Statistics C (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American heart association’s strategic impact goal through 2020 and beyond. Circulation 121(4):586–613. https://doi.org/10.1161/CIRCULATIONAHA.109.192703

    Article  PubMed  Google Scholar 

  12. Mozaffarian RS, Lee RM, Kennedy MA, Ludwig DS, Mozaffarian D, Gortmaker SL (2013) Identifying whole grain foods: a comparison of different approaches for selecting more healthful whole grain products. Public Health Nutr 16(12):2255–2264. https://doi.org/10.1017/S1368980012005447

    Article  PubMed  PubMed Central  Google Scholar 

  13. AlEssa HB, Bhupathiraju SN, Malik VS, Wedick NM, Campos H, Rosner B, Willett WC, Hu FB (2015) Carbohydrate quality and quantity and risk of type 2 diabetes in US women. Am J Clin Nutr 102(6):1543–1553. https://doi.org/10.3945/ajcn.115.116558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. AlEssa HB, Cohen R, Malik VS, Adebamowo SN, Rimm EB, Manson JE, Willett WC, Hu FB (2018) Carbohydrate quality and quantity and risk of coronary heart disease among US women and men. Am J Clin Nutr 107(2):257–267. https://doi.org/10.1093/ajcn/nqx060

    Article  PubMed  PubMed Central  Google Scholar 

  15. Centers for disease control and prevention. National health and nutrition examination survey (NHANES) (2021) NHANES procedure manuals. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/manuals.aspx?BeginYear=2019. Accessed 11 Mar 2021

  16. Ahluwalia N, Dwyer J, Terry A, Moshfegh A, Johnson C (2016) Update on NHANES dietary data: Focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr 7(1):121–134. https://doi.org/10.3945/an.115.009258

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tooze JA, Midthune D, Dodd KW, Freedman LS, Krebs-Smith SM, Subar AF, Guenther PM, Carroll RJ, Kipnis V (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106(10):1575–1587. https://doi.org/10.1016/j.jada.2006.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  18. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES) (2021) Laboratory procedure manual of high sensitivity C-reactive protein (hs-CRP). extension://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2F wwwn.cdc.gov%2Fnchs%2Fdata%2Fnhanes%2F2017–2018%2Flabmethods%2FHSCRP-J-MET-508.pdf. Accessed 11 Mar 2021

  19. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4 Suppl):1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S (Discussion 1229S-1231S)

    Article  CAS  PubMed  Google Scholar 

  20. Song M, Giovannucci E (2018) Substitution analysis in nutritional epidemiology: proceed with caution. Eur J Epidemiol 33(2):137–140. https://doi.org/10.1007/s10654-018-0371-2

    Article  PubMed  Google Scholar 

  21. Kan H, Stevens J, Heiss G, Klein R, Rose KM, London SJ (2007) Dietary fiber intake and retinal vascular caliber in the atherosclerosis risk in communities study. Am J Clin Nutr 86(6):1626–1632. https://doi.org/10.1093/ajcn/86.5.1626

    Article  CAS  PubMed  Google Scholar 

  22. Kim Y, Je Y (2014) Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol 180(6):565–573. https://doi.org/10.1093/aje/kwu174

    Article  PubMed  Google Scholar 

  23. US department of agriculture and US department of health and human services (2021) Dietary guidelines for Americans (2020–2025). https://www.dietaryguidelinesgov/resources/2020-2025-dietary-guidelines-online-materials. Accessed 18 Dec 2021

  24. Kant AK, Graubard BI, Schatzkin A (2004) Dietary patterns predict mortality in a national cohort: the national health interview surveys, 1987 and 1992. J Nutr 134(7):1793–1799. https://doi.org/10.1093/jn/134.7.1793

    Article  CAS  PubMed  Google Scholar 

  25. Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB (2008) Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 118(3):230–237. https://doi.org/10.1161/CIRCULATIONAHA.108.771881

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stewart RA, Wallentin L, Benatar J, Danchin N, Hagstrom E, Held C, Husted S, Lonn E, Stebbins A, Chiswell K, Vedin O, Watson D, White HD, Investigators S (2016) Dietary patterns and the risk of major adverse cardiovascular events in a global study of high-risk patients with stable coronary heart disease. Eur Heart J 37(25):1993–2001. https://doi.org/10.1093/eurheartj/ehw125

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, Bechthold A, Schlesinger S, Boeing H (2017) Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 105(6):1462–1473. https://doi.org/10.3945/ajcn.117.153148

    Article  CAS  PubMed  Google Scholar 

  28. Jenkins DJ, Wolever TM, Leeds AR, Gassull MA, Haisman P, Dilawari J, Goff DV, Metz GL, Alberti KG (1978) Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J 1(6124):1392–1394. https://doi.org/10.1136/bmj.1.6124.1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Howarth NC, Saltzman E, Roberts SB (2001) Dietary fiber and weight regulation. Nutr Rev 59(5):129–139. https://doi.org/10.1111/j.1753-4887.2001.tb07001.x

    Article  CAS  PubMed  Google Scholar 

  30. Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69(1):30–42. https://doi.org/10.1093/ajcn/69.1.30

    Article  CAS  PubMed  Google Scholar 

  31. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205. https://doi.org/10.1111/j.1753-4887.2009.00189.x

    Article  PubMed  Google Scholar 

  32. Streppel MT, Arends LR, van’t Veer P, Grobbee DE, Geleijnse JM (2005) Dietary fiber and blood pressure: a meta-analysis of randomized placebo-controlled trials. Arch Intern Med 165(2):150–156. https://doi.org/10.1001/archinte.165.2.150

    Article  PubMed  Google Scholar 

  33. Ma Y, Hebert JR, Li W, Bertone-Johnson ER, Olendzki B, Pagoto SL, Tinker L, Rosal MC, Ockene IS, Ockene JK, Griffith JA, Liu S (2008) Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative observational Study. Nutrition 24(10):941–949. https://doi.org/10.1016/j.nut.2008.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. AlEssa HB, Ley SH, Rosner B, Malik VS, Willett WC, Campos H, Hu FB (2016) High fiber and low starch intakes are associated with circulating intermediate biomarkers of type 2 diabetes among women. J Nutr 146(2):306–317. https://doi.org/10.3945/jn.115.219915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB (2010) Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med 153(5):289–298. https://doi.org/10.7326/0003-4819-153-5-201009070-00003

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mazidi M, Katsiki N, Mikhailidis DP, Sattar N, Banach M (2019) Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J 40(34):2870–2879. https://doi.org/10.1093/eurheartj/ehz174

    Article  CAS  PubMed  Google Scholar 

  37. Shan Z, Guo Y, Hu FB, Liu L, Qi Q (2020) Association of low-carbohydrate and low-fat diets with mortality among US adults. JAMA Intern Med 180(4):513–523. https://doi.org/10.1001/jamainternmed.2019.6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Musa-Veloso K, Poon T, Harkness LS, O’Shea M, Chu Y (2018) The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 108(4):759–774. https://doi.org/10.1093/ajcn/nqy112

    Article  PubMed  Google Scholar 

  39. Vanegas SM, Meydani M, Barnett JB, Goldin B, Kane A, Rasmussen H, Brown C, Vangay P, Knights D, Jonnalagadda S, Koecher K, Karl JP, Thomas M, Dolnikowski G, Li L, Saltzman E, Wu D, Meydani SN (2017) Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 105(3):635–650. https://doi.org/10.3945/ajcn.116.146928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB (2010) Caloric sweetener consumption and dyslipidemia among US adults. JAMA 303(15):1490–1497. https://doi.org/10.1001/jama.2010.449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang X, Lin X, Ouyang YY, Liu J, Zhao G, Pan A, Hu FB (2016) Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies. Public Health Nutr 19(5):893–905. https://doi.org/10.1017/S1368980015002062

    Article  PubMed  Google Scholar 

  42. Shih CW, Hauser ME, Aronica L, Rigdon J, Gardner CD (2019) Changes in blood lipid concentrations associated with changes in intake of dietary saturated fat in the context of a healthy low-carbohydrate weight-loss diet: a secondary analysis of the Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) trial. Am J Clin Nutr 109(2):433–441. https://doi.org/10.1093/ajcn/nqy305

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jurek AM, Greenland S, Maldonado G, Church TR (2005) Proper interpretation of non-differential misclassification effects: expectations vs observations. Int J Epidemiol 34(3):680–687. https://doi.org/10.1093/ije/dyi060

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82073651), Anhui Provincial Natural Science foundation (2008085MH262 and 2108085QH357), Anhui Provincial Education Department (gxyqZD2021099), and grants from Anhui Medical University (2021xkjT007, 2020lcxk033, XJ201935, and 2019xkj161).

Author information

Authors and Affiliations

Authors

Contributions

XZ, XL, and HL had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: WY and JH. Acquisition, analysis, or interpretation of data: all authors. Drafting of the manuscript: XZ, XL, and WY. Critical revision of the manuscript for important intellectual content: all authors. Statistical analysis: XZ and XL. Obtained funding: WY. Administrative, technical, or material support: WY. Study supervision: WY.

Corresponding author

Correspondence to Wanshui Yang.

Ethics declarations

Conflict of interest

The authors disclose no conflicts.

Ethical approval

The NCHS Research Ethics Review Board approved the NHANES study protocols at https://www.cdc.gov/nchs/nhanes/irba98.htm.

Consent to participate

All participants provided the written informed consent.

Consent for publication

All of the authors have read and approved the final version of this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 672 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Li, X., Zhang, Z. et al. A prospective study of carbohydrate intake and risk of all-cause and specific-cause mortality. Eur J Nutr 61, 3149–3160 (2022). https://doi.org/10.1007/s00394-022-02877-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02877-0

Keywords

Navigation