Skip to main content

Advertisement

Log in

The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to assess the effect of Bacillus coagulans Unique IS-2 supplementation on absorption and utilization of protein in resistance-trained males.

Methods

In this double blind, placebo-control trial, resistance-trained males (21.08 ± 2.84 years) were randomized to consume, either 20 g of whey protein powder {80% whey protein concentrate (WPC80), amounting to 15.4 g protein} with 2 billion CFU Bacillus coagulans Unique IS-2 (supplemental group) or 20 g of whey protein powder and lactose instead of Bacillus coagulans (placebo group) once daily for 60 days with a controlled resistance exercise protocol. The whey protein concentrate (WPC-80) given to both groups had a lactose content of 6.8%. Plasma-free amino acids (PFAAs) were determined at baseline, at 30 and 60 days of supplementation. Muscle strength, hypertrophy, VO2 max, and body composition, and other biochemical parameters were assessed at baseline and end line.

Results

A positive effect of probiotic Bacillus coagulans Unique IS-2 supplementation was observed on protein absorption as evidenced by an increase in total PFAA by + 16.1% (p = 0.004). Branched chain amino acids (BCAA) comprising isoleucine (p = 0.016), leucine (p = 0.001), and valine (p = 0.002) were increased by + 33.1% in ITT analysis as compared to placebo after 60 days. At 30 days an increase in isoleucine by + 35% (p = 0.113), leucine by + 43% (p = 0.032), and valine by + 32% (p = 0.017) was observed in ITT analysis. Probiotic effect was shown on exercise performance as evidenced by an increase in one RM of leg press and vertical jump power by + 16.61% (p = 0.024) and + 7.86% (p = 0.007), respectively.

Conclusion

Significantly increased absorption of BCAA with supplementation of B. coagulans Unique IS-2 along with whey protein and improvement in leg press and vertical jump power was noted indicating the positive effect of the probiotic on muscle power in the lower body.

Trial registration number

CTRI/2017/03/008117; Date:16.03.2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Verna EC, Lucak S (2010) Use of probiotics in gastrointestinal disorders: what to recommend? Therap Adv Gastroenterol 3(5):307–319. https://doi.org/10.1177/1756283X10373814

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27(6):496–501. https://doi.org/10.1097/MOG.0b013e32834baa4d

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kocsis T, Molnár B, Németh D, Hegyi P, Szakács Z, Bálint A, Garami A, Soós A, Márta K, Solymár M (2020) Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Sci Rep 10(1):11787. https://doi.org/10.1038/s41598-020-68440-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thushara RM, Gangadaran S, Solati Z, Moghadasian MH (2016) Cardiovascular benefits of probiotics: a review of experimental and clinical studies. Food Funct 7(2):632–642. https://doi.org/10.1039/c5fo01190f (PMID: 26786971)

    Article  CAS  PubMed  Google Scholar 

  5. Górska A, Przystupski D, Niemczura MJ, Kulbacka J (2019) Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 76(8):939–949. https://doi.org/10.1007/s00284-019-01679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallace CJK, Milev R (2017) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry 16:14. https://doi.org/10.1186/s12991-017-0138-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R (2019) Gut microbiota and obesity: a role for probiotics. Nutrients 11(11):2690. https://doi.org/10.3390/nu11112690

    Article  CAS  PubMed Central  Google Scholar 

  8. Kazemi A, Soltani S, Ghorabi S, Keshtkar A, Daneshzad E, Nasri F, Mazloomi SM (2020) Effect of probiotic and synbiotic supplementation on inflammatory markers in health and disease status: a systematic review and meta-analysis of clinical trials. Clin Nutr 39(3):789–819. https://doi.org/10.1016/j.clnu.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Sivamaruthi BS, Kesika P, Chaiyasut C (2018) Probiotic based therapy for atopic dermatitis: Outcomes of clinical studies. Asian Pac J Trop Biomed 8:328–32. https://www.apjtb.org/text.asp?2018/8/6/328/235328

  10. Vouloumanou EK, Makris GC, Karageorgopoulos DE, Falagas ME (2009) Probiotics for the prevention of respiratory tract infections: a systematic review. Int J Antimicrob Agents 34(3):197.e1–10. https://doi.org/10.1016/j.ijantimicag.2008.11.005

    Article  CAS  Google Scholar 

  11. Sheridan PO, Bindels LB, Saulnier DM, Reid G, Nova E, Holmgren K, O’Toole PW, Bunn J, Delzenne N, Scott KP (2014) Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? Gut Microbes 5(1):74–82. https://doi.org/10.4161/gmic.27252

    Article  PubMed  Google Scholar 

  12. Jäger R, Mohr AE, Pugh JN (2020) Recent advances in clinical probiotic research for sport. Curr Opin Clin Nutr Metab Care 23(6):428–436. https://doi.org/10.1097/MCO.0000000000000686

    Article  PubMed  PubMed Central  Google Scholar 

  13. Michalickova D, Minic R, Dikic N, Andjelkovic M, Kostic-Vucicevic M, Stojmenovic T, Nikolic I, Djordjevic B (2016) Lactobacillus helveticus Lafti L10 supplementation reduces respiratory infection duration in a cohort of elite athletes: a randomized, double-blind, placebo-controlled trial. Appl Physiol Nutr Metab 41(7):782–789. https://doi.org/10.1139/apnm-2015-0541

    Article  CAS  PubMed  Google Scholar 

  14. Sudha MR, Bhonagiri S (2012) Efficacy of Bacillus coagulans strain Unique IS-2 in the treatment of patients with acute diarrhea. Int J Probiotics Prebiotics 7(1):33–37

    Google Scholar 

  15. Jäger, R. (2013) Ergogenic Sport Supplements, In Sports Nutrition & Performance Enhancing Supplements. Antonio J, Smith-Ryan A (Eds). Linus Publications, Deer Park New York. ISBN 978–1607973393.

  16. Cox AJ, Pyne DB, Saunders PU, Fricker PA (2010) Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes. Br J Sports Med 44(4):222–226. https://doi.org/10.1136/bjsm.2007.044628

    Article  CAS  PubMed  Google Scholar 

  17. Gleeson M, Bishop NC, Oliveira M, Tauler P (2011) Daily probiotic’s (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metab 21(1):55–64. https://doi.org/10.1123/ijsnem.21.1.55

    Article  PubMed  Google Scholar 

  18. Clancy RL, Gleeson M, Cox A et al (2006) Reversal in fatigued athletes of a defect in interferon gamma secretion after administration of Lactobacillus acidophilus. Br J Sports Med 40(4):351–354. https://doi.org/10.1136/bjsm.2005.024364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nazemian V, Shadnoush M, Manaheji H, Zaringhalam J (2016) Probiotics and Inflammatory Pain: A Literature Review Study. Middle East J Rehabil Health Stud 3(2):e36087 https://doi.org/10.17795/mejrh-36087.

  20. Salarkia N, Ghadamli L, Zaeri F, Sabaghian Rad L (2013) Effects of probiotic yogurt on performance, respiratory and digestive systems of young adult female endurance swimmers: a randomized controlled trial. Med J Islam Repub Iran 27(3):141–146

    PubMed  PubMed Central  Google Scholar 

  21. Jäger R, Zaragoza J, Purpura M et al (2020) Probiotic administration increases amino acid absorption from plant protein: a placebo-controlled, randomized, double-blind, multicenter. Crossover Study Probiotics Antimicrob Proteins 12(4):1330–1339. https://doi.org/10.1007/s12602-020-09656-5

    Article  CAS  PubMed  Google Scholar 

  22. Jager R, Purpura M, Farmer S, Cash HA, Keller D (2018) Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics & Antimicro Prot 10:611–615. https://doi.org/10.1007/s12602-017-9354-y

    Article  CAS  Google Scholar 

  23. Georges J, Lowery RP, Yaman G, Kerio C, Ormes J, McCleary SA, et al (2014) The effects of probiotic supplementation on lean body mass, strength, and power, and health indicators in resistance trained males: a pilot study. J Int Soc Sports Nutr 11(Supp. l1):P38. https://doi.org/10.1186/1550-2783-11-S1-P38

  24. Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C, Purpura M, Wilson JM (2016) Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise induced muscle damage and increases recovery. Peer J 4:e2276. https://doi.org/10.7717/peerj.2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baron M (2009) A patented strain of Bacillus coagulans increased immune response to viral challenge. Postgrad Med 121(2):114–118. https://doi.org/10.3810/pgm.2009.03.1971

    Article  PubMed  Google Scholar 

  26. Parvaneh K, Jamaluddin R, Karimi G, Erfani R (2014) Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density. Sci. World J. Article ID:595962. https://doi.org/10.1155/2014/595962

  27. Sudha R, Chauhan P, Dixit K, Babu SM, Jamil K (2010) Molecular typing and probiotic attributes of a new strain of Bacillus coagulans–Unique IS-2: a potential biotherapeutic agent. Genetic Eng Biotechnol J 7:1–20. https://astonjournals.com/manuscripts/Vol2010/GEBJ-7_Vol2010.pdf

  28. Sudha MR, Jayanthi N, Aasin M, Dhanashri RD, Anirudh T (2018) Efficacy of Bacillus coagulans Unique IS2 in treatment of irritable bowel syndrome in children: a double blind, randomised placebo controlled study. Benef Microbes 9(4):563–572. https://doi.org/10.3920/BM2017.0129

    Article  CAS  PubMed  Google Scholar 

  29. Madempudi RS, Neelamraju J, Ahire JJ, Gupta SK, Shukla VK (2020) Bacillus coagulans Unique IS2 in constipation: a double-blind, placebo-controlled study. Probiotics & Antimicro Prot 12(2):335–342. https://doi.org/10.1007/s12602-019-09542-9

    Article  Google Scholar 

  30. Eslami S, M. Karandish M, Marandi SM and Zand-Moghaddam A (2009) The Study of Whey Protein Supplementation on Plasma Essential Amino Acids Concentrations after Resistance Exercise in Healthy Young Athletes. J Biol Sci 9: 145-15. https://doi.org/10.3923/jbs.2009.145.151

  31. Krzysztofik M, Wilk M, Wojdała G, Gołaś A (2019) Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int J Environ Res Public Health 16(24):4897. https://doi.org/10.3390/ijerph16244897

    Article  PubMed Central  Google Scholar 

  32. Lin J, Chen T (2012) Diversity of strength training methods: a theoretical approach. Strength and Conditioning Journal 34:42–49. https://doi.org/10.1519/SSC.0b013e31822f73ea

    Article  CAS  Google Scholar 

  33. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO (1990) A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 51(2):241–247. https://doi.org/10.1093/ajcn/51.2.241

    Article  CAS  PubMed  Google Scholar 

  34. Henderson JW, Brooks A (2010) Improved amino acid methods using Agilent ZORBAX Eclipse Plus C18 columns for a variety of Agilent LC instrumentation and separation goals. Agilent Technologies, Wilmington, DE. www.chem.agilent.com/Library/applications/5990-4547EN.pdf.

  35. McArdle WD, Katch FI, & Katch VL (2010) Exercise physiology: Nutrition, energy and human performance (7th ed.). Philadelphia: Lippincott Williams & Wilkins; Chapter 11: p.245. ISBN: 0781797810,978–0–7817–9781–8

  36. Svedlund J, Sjödin I, Dotevall G (1988) GSRS—a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Digest Dis Sci 33:129–134. https://doi.org/10.1007/BF01535722

    Article  CAS  PubMed  Google Scholar 

  37. Barrett B, Locken K, Maberry R, Schwamman J, Brown R, Bobula J, Stauffacher EA (2002) The wisconsin upper respiratory symptom survey (WURSS): a new research instrument for assessing the common cold. J Fam Pract 51(3):265

    PubMed  Google Scholar 

  38. Jäger R, Kersick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM et al (2017) International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr 14(1):20. https://doi.org/10.1186/s12970-017-0177-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monirujjaman M & Ferdouse A (2014) Metabolic and physiological roles of branched-chain amino acids. Adv Mol Bio e364976. https://doi.org/10.1155/2014/364976

  40. Keller D, Van Dinter R, Cash H, Farmer S, Venema K (2017) Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Benef Microbes 8(3):491–496. https://doi.org/10.3920/BM2016.0196

    Article  CAS  PubMed  Google Scholar 

  41. Stecker, R.A., Moon, J.M., Russo, T.J. et al. Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr Metab (Lond) 17, 93 (2020). https://doi.org/10.1186/s12986-020-00515-2

  42. Wang J, Ji H (2019) Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Curr Protein Pept Sci 20(2):125–213. https://doi.org/10.2174/1389203719666180517100339

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Gu Q (2010) Effect of probiotic on growth performance and digestive enzyme activity of arbor acres broilers. Res Vet Sci 89:163–167. https://doi.org/10.1016/j.rvsc.2010.03.009

    Article  CAS  PubMed  Google Scholar 

  44. Minevich J, Olson M, Mannion J et al (2015) Digestive enzymes reduce quality difference between plant and animal proteins: a double-blind crossover study (abstract). J Int Soc Sports Nutr 12:P26. https://doi.org/10.1186/1550-2783-12-S1-P26

    Article  PubMed Central  Google Scholar 

  45. Toohey JC, Townsend JR, Johnson SB et al (2018) Effects of probiotic (Bacillus subtilis) supplementation during offseason resistance training in female division I athletes. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000002675

    Article  Google Scholar 

  46. Hoffman JR, Hoffman MW, Zelicha H et al (2019) The effect of 2 weeks of inactivated probiotic Bacillus coagulans on endocrine, inflammatory, and performance responses during self-defense training in soldiers. J Strength Cond Res 33(9):2330–2337. https://doi.org/10.1519/JSC.0000000000003265

    Article  PubMed  Google Scholar 

  47. Häkkinen K, Komi PV, Alén M, Kauhanen H (1987) EMG, muscle fibre and force production characteristics during a 1-year training period in elite weight-lifters. Eur J Appl Physiol Occup Physiol 56(4):419–427. https://doi.org/10.1007/BF00417769 (PMID: 3622485)

    Article  PubMed  Google Scholar 

  48. Hakkinen K, Alen M, Komi PV (1984) Neuromuscular, anaerobic and aerobic performance characteristics of elite power athletes. Eur J Appl Physiol 53:97–105. https://doi.org/10.1007/BF00422570

    Article  CAS  Google Scholar 

  49. Hakkinen K, Alen M, Komi PV (1985) Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand 125:573–585. https://doi.org/10.1111/j.1748-1716.1985.tb07760.x

    Article  CAS  PubMed  Google Scholar 

  50. Sudha, M Ratna; Arunasree, Kalle M (2015) Anti-inflammatory and immunomodulatory effects of Bacillus coagulans Unique IS2. Int J Probiotics Prebiotics 10:31–36. https://search.proquest.com/openview/de2d19fcfbb134900ca10fcaba87f0b7/1?pq-origsite=gscholar&cbl=136102

Download references

Acknowledgements

We would like to thank all the members involved in the fieldwork, especially Mr. Abhishek Dwivedi, Mr. Libu John, and Mr. Rajesh Kumar for monitoring compliance and exercise protocol. We also gratefully acknowledge all study participants for their collaboration.

Funding

This work was supported by the Unique Biotech Ltd. The funding bodies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MT participated in the design of experiment, contributed to data collection and data analysis; and drafted the manuscript. RL was involved in the design of the study and critical amendments; NB participated in the design of the study and contributed towards the recruitment of the participants and data collection. RG, DK, AR, and DSC contributed to data collection; ADU and MK helped in data analysis and interpretation of results. AS, JN, RSM, and RR contributed in the evaluation of the manuscript. All authors have read and approved the final version of the manuscript, and agree with the order of presentation of the authors.

Corresponding author

Correspondence to Lakshmy Ramakrishnan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 471 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarik, M., Ramakrishnan, L., Bhatia, N. et al. The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study. Eur J Nutr 61, 2673–2685 (2022). https://doi.org/10.1007/s00394-022-02844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02844-9

Keywords

Navigation