World Health Organization (2018) Obesity and overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 15 Sept 2021
Sanz Y, Santacruz A, Gauffin P (2010) Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc 69:434–441. https://doi.org/10.1017/S0029665110001813
CAS
Article
PubMed
Google Scholar
Muller TD, Clemmensen C, Finan B, DiMarchi RD, Tschop MH (2018) Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol Rev 70:712–746. https://doi.org/10.1124/pr.117.014803
CAS
Article
PubMed
Google Scholar
Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376:254–266. https://doi.org/10.1056/NEJMra1514009
CAS
Article
PubMed
Google Scholar
Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab. https://doi.org/10.1186/s12986-016-0067-0
Article
Google Scholar
Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904. https://doi.org/10.1152/physrev.00045.2009
CAS
Article
PubMed
Google Scholar
Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(Suppl 2):S58-61. https://doi.org/10.1086/523341
Article
PubMed
Google Scholar
Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339. https://doi.org/10.1136/gutjnl-2015-309990
Article
PubMed
Google Scholar
Rouxinol-Dias AL, Pinto AR, Janeiro C, Rodrigues D, Moreira M, Dias J et al (2016) Probiotics for the control of obesity—its effect on weight change. Porto Biomed J 1:12–24. https://doi.org/10.1016/j.pbj.2016.03.005
Article
PubMed
PubMed Central
Google Scholar
Raoult D (2009) Probiotics and obesity: a link? Nat Rev Microbiol 7:616. https://doi.org/10.1038/nrmicro2209
CAS
Article
PubMed
Google Scholar
Chang CS, Ruan JW, Kao CY (2019) An overview of microbiome based strategies on anti-obesity. Kaohsiung J Med Sci 35:7–16. https://doi.org/10.1002/kjm2.12010
Article
PubMed
Google Scholar
Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM et al (2016) Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbi. https://doi.org/10.1038/npjbiofilms.2016.9
Article
Google Scholar
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517. https://doi.org/10.2337/db08-1637
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen W, Zhang S, Wu J, Ye T, Wang S, Wang P et al (2020) Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta 507:236–241. https://doi.org/10.1016/j.cca.2020.04.037
CAS
Article
PubMed
Google Scholar
Fu X, Liu Z, Zhu C, Mou H, Kong Q (2019) Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr 59:S130–S152. https://doi.org/10.1080/10408398.2018.1542587
CAS
Article
PubMed
Google Scholar
Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15:2631–2641. https://doi.org/10.1111/1462-2920.12173
CAS
Article
PubMed
PubMed Central
Google Scholar
Sanchez Ramos L, Rodloff AC (2018) Identification of Clostridium species using the VITEK((R)) MS. Anaerobe 54:217–223. https://doi.org/10.1016/j.anaerobe.2018.01.007
CAS
Article
PubMed
Google Scholar
Ling Z, Liu X, Cheng Y, Luo Y, Yuan L, Li L et al (2015) Clostridium butyricum combined with Bifidobacterium infantis probiotic mixture restores fecal microbiota and attenuates systemic inflammation in mice with antibiotic-associated diarrhea. Biomed Res Int. https://doi.org/10.1155/2015/582048
Article
PubMed
PubMed Central
Google Scholar
Sun YY, Li M, Li YY, Li LX, Zhai WZ, Wang P et al (2018) The effect of Clostridium butyricum on symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. Sci Rep. https://doi.org/10.1038/s41598-018-21241-z
Article
PubMed
PubMed Central
Google Scholar
Shang H, Sun J, Chen YQ (2016) Clostridium butyricum CGMCC0313.1 modulates lipid profile, insulin resistance and colon homeostasis in obese mice. PLoS ONE 11:e0154373. https://doi.org/10.1371/journal.pone.0154373
CAS
Article
PubMed
PubMed Central
Google Scholar
Jia L, Li D, Feng N, Shamoon M, Sun Z, Ding L et al (2017) Anti-diabetic effects of Clostridium butyricum CGMCC0313.1 through promoting the growth of gut butyrate-producingbacteria in type 2 diabetic mice. Sci Rep. https://doi.org/10.1038/s41598-017-07335-0
Article
PubMed
PubMed Central
Google Scholar
Buckel W, Barker H (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117:1248–1260. https://doi.org/10.1128/jb.117.3.1248-1260.1974
CAS
Article
PubMed
PubMed Central
Google Scholar
Leutbecher U, Böcher R, Linder D, BUCKEL W (1992) Glutamate mutase from Clostridium cochlearium: purification, cobamide content and stereospecific inhibitors. Eur J Biochem 205:759–765. https://doi.org/10.1111/j.1432-1033.1992.tb16840.x
CAS
Article
PubMed
Google Scholar
Lee W, Fujisawa T, Kawamura S, Itoh K, Mitsuoka T (1991) Isolation and identification of clostridia from the intestine of laboratory animals. Lab Anim 25:9–15. https://doi.org/10.1258/002367791780808158
CAS
Article
PubMed
Google Scholar
Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen M-L, Bolte E et al (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35:S6-16. https://doi.org/10.1086/341914
Article
PubMed
Google Scholar
Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12:304–314. https://doi.org/10.1111/j.1462-2920.2009.02066.x
CAS
Article
PubMed
Google Scholar
Ippagunta SM, Kharitonenkov A, Adams AC, Hillgartner FB (2018) Cholic acid supplementation of a high-fat obesogenic diet suppresses hepatic triacylglycerol accumulation in mice via a fbroblast growth factor 21–dependent mechanism. J Nutr 148:510–517. https://doi.org/10.1093/jn/nxy022
Article
PubMed
Google Scholar
Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703. https://doi.org/10.1038/nprot.2007.376
CAS
Article
PubMed
Google Scholar
Kaspar H (2009) Amino acid analysis in biological fluids by GC-MS. PhD, University of Regensburg
Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q et al (2013) A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 9:818–827. https://doi.org/10.1007/s11306-013-0500-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083. https://doi.org/10.1038/nprot.2011.335
CAS
Article
PubMed
Google Scholar
Lu D, Xue L, Feng C, Wu C, Xie C, Gonzalez FJ et al (2019) A systemic workflow for profiling metabolome and lipidome in tissue. J Chromatogr A 1589:105–115. https://doi.org/10.1016/j.chroma.2018.12.061
CAS
Article
PubMed
Google Scholar
Gong J, Feng Z, Peterson AL, Carr JF, Lu X, Zhao H et al (2021) The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight 6:e137594. https://doi.org/10.1172/jci.insight.137594
Article
PubMed Central
Google Scholar
Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Matsushita K (2017) Butyrate production under aerobic growth conditions by engineered Escherichia coli. J Biosci Bioeng 123:562–568. https://doi.org/10.1016/j.jbiosc.2016.12.008
CAS
Article
PubMed
Google Scholar
Jing L, Guigonis J-M, Borchiellini D, Durand M, Pourcher T, Ambrosetti D (2019) LC-MS based metabolomic profiling for renal cell carcinoma histologic subtypes. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-52059-y
CAS
Article
Google Scholar
Borga M, West J, Bell JD, Harvey NC, Romu T, Heymsfield SB et al (2018) Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med 66:1–9. https://doi.org/10.1136/jim-2018-000722
Article
PubMed
PubMed Central
Google Scholar
Segal KR, Dunaif A, Gutin B, Albu J, Nyman A, Pi-Sunyer FX (1987) Body composition, not body weight, is related to cardiovascular disease risk factors and sex hormone levels in men. J Clin Invest 80:1050–1055. https://doi.org/10.1172/JCI113159
CAS
Article
PubMed
PubMed Central
Google Scholar
Hardy OT, Czech MP, Corvera S (2012) What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19:81–87. https://doi.org/10.1097/MED.0b013e3283514e13
CAS
Article
PubMed
PubMed Central
Google Scholar
Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126:126–132. https://doi.org/10.1161/CIRCULATIONAHA.111.087213
Article
PubMed
PubMed Central
Google Scholar
Jéquier E (2002) Pathways to obesity. Int J Obes 26:S12–S17. https://doi.org/10.1038/sj.ijo.0802123
CAS
Article
Google Scholar
Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299. https://doi.org/10.1017/S0954422410000168
CAS
Article
PubMed
Google Scholar
Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab 13:1–13. https://doi.org/10.1186/s12986-016-0067-0
CAS
Article
Google Scholar
Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M (2016) The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis 15:1–8. https://doi.org/10.1186/s12944-016-0278-4
CAS
Article
Google Scholar
Anand S, Kaur H, Mande SS (2016) Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front Microbiol 7:1945. https://doi.org/10.3389/fmicb.2016.01945
Article
PubMed
PubMed Central
Google Scholar
Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779. https://doi.org/10.1136/gut.22.9.763
CAS
Article
PubMed
PubMed Central
Google Scholar
Butel MJ (2014) Probiotics, gut microbiota and health. Med Mal Infect 44:1–8. https://doi.org/10.1016/j.medmal.2013.10.002
Article
PubMed
Google Scholar
Yan F, Polk DB (2010) Probiotics: progress toward novel therapies for intestinal diseases. Curr Opin Gastroenterol 26:95–101. https://doi.org/10.1097/MOG.0b013e328335239a
Article
PubMed
PubMed Central
Google Scholar
Liu H, Wang J, He T, Becker S, Zhang G, Li D et al (2018) Butyrate: a double-edged sword for health? Adv Nutr 9:21–29
CAS
Article
PubMed
PubMed Central
Google Scholar
Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6:110–119. https://doi.org/10.4291/wjgp.v6.i4.110
Article
PubMed
PubMed Central
Google Scholar
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012
CAS
Article
Google Scholar
Fernandes J, Su W, Rahat-Rozenbloom S, Wolever T, Comelli E (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. https://doi.org/10.1038/nutd.2014.23
Article
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414
Article
PubMed
Google Scholar
Murphy E, Cotter P, Healy S, Marques TM, O’sullivan O, Fouhy F et al (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635–1642. https://doi.org/10.1136/gut.2010.215665
CAS
Article
PubMed
Google Scholar
Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195. https://doi.org/10.1038/oby.2009.167
Article
PubMed
Google Scholar
Tulipani S, Palau-Rodriguez M, Alonso AM, Cardona F, Marco-Ramell A, Zonja B et al (2016) Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes. Clin Chim Acta 463:53–61. https://doi.org/10.1016/j.cca.2016.10.005
CAS
Article
PubMed
Google Scholar
Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M et al (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36:648–655. https://doi.org/10.2337/dc12-0895
CAS
Article
PubMed
PubMed Central
Google Scholar
Sailer M, Dahlhoff C, Giesbertz P, Eidens MK, de Wit N, Rubio-Aliaga I et al (2013) Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome. PLoS ONE 8:e63950. https://doi.org/10.1371/journal.pone.0063950
CAS
Article
PubMed
PubMed Central
Google Scholar
Lent-Schochet D, McLaughlin M, Ramakrishnan N, Jialal I (2019) Exploratory metabolomics of metabolic syndrome: a status report. World J Diabetes 10:23. https://doi.org/10.4239/wjd.v10.i1.23
Article
PubMed
PubMed Central
Google Scholar
Monti LD, Casiraghi MC, Setola E, Galluccio E, Pagani MA, Quaglia L et al (2013) L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism 62:255–264. https://doi.org/10.1016/j.metabol.2012.08.004
CAS
Article
PubMed
Google Scholar
Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12:668. https://doi.org/10.1038/nrendo.2016.98
CAS
Article
PubMed
Google Scholar
Gross RW, Han X (2007) Lipidomics in diabetes and the metabolic syndrome. Meth Enzymol 433:73–90. https://doi.org/10.1016/S0076-6879(07)33004-8
CAS
Article
Google Scholar
Syme C, Czajkowski S, Shin J, Abrahamowicz M, Leonard G, Perron M et al (2016) Glycerophosphocholine metabolites and cardiovascular disease risk factors in adolescents: a cohort study. Circulation 134:1629–1636. https://doi.org/10.1161/CIRCULATIONAHA.116.022993
CAS
Article
PubMed
Google Scholar
Cole LK, Vance JE, Vance DE (2012) Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta, Mol Cell Biol Lipids 1821:754–761. https://doi.org/10.1016/j.bbalip.2011.09.009
CAS
Article
Google Scholar
Law S-H, Chan M-L, Marathe GK, Parveen F, Chen C-H, Ke L-Y (2019) An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci 20:1149. https://doi.org/10.3390/ijms20051149
CAS
Article
PubMed Central
Google Scholar
Heimerl S, Fischer M, Baessler A, Liebisch G, Sigruener A, Wallner S et al (2014) Alterations of plasma lysophosphatidylcholine species in obesity and weight loss. PLoS ONE 9:e111348. https://doi.org/10.1371/journal.pone.0111348
CAS
Article
PubMed
PubMed Central
Google Scholar
Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA et al (2012) Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE 7:e41456. https://doi.org/10.1371/journal.pone.0041456
CAS
Article
PubMed
PubMed Central
Google Scholar
Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, Donapetry-García C, Pedre-Piñeiro AM (2017) Significance of L-carnitine for human health. IUBMB Life 69:578–594. https://doi.org/10.1002/iub.1646
CAS
Article
PubMed
Google Scholar
Guasch-Ferré M, Ruiz-Canela M, Li J, Zheng Y, Bulló M, Wang DD et al (2019) Plasma acylcarnitines and risk of type 2 diabetes in a Mediterranean population at high cardiovascular risk. J Clin Endocrinol Metab 104:1508–1519. https://doi.org/10.1210/jc.2018-01000
Article
PubMed
Google Scholar
Hoppel CL, Genuth SM (1982) Urinary excretion of acetylcarnitine during human diabetic and fasting ketosis. Am J Physiol Endocrinol Metab 243:E168–E172. https://doi.org/10.1152/ajpendo.1982.243.2.E168
CAS
Article
Google Scholar