Skip to main content

Characterization of metabolites and biomarkers for the probiotic effects of Clostridium cochlearium on high-fat diet-induced obese C57BL/6 mice

A Correction to this article was published on 06 April 2022

This article has been updated

Abstract

Purpose

Probiotic species of butyrate producers have been investigated for the potential in preventing and treating obesity and overweight. However, Clostridium cochlearium has not been linked with any health benefits. We hypothesized that C. cochlearium could be a promising new probiotic with health benefits in improving body weight control and insulin sensitivity.

Methods

Productions of short-chain fatty acids (SCFAs) were characterized for C. cochlearium by NMR and GC–MS analyses. Probiotic effects of C. cochlearium were evaluated through diet-induced obese (DIO) C57BL/6 mice. The influence of C. cochlearium administration on gut SCFAs was measured using GC–MS. LC–MS-based untargeted metabolomic profiling and multivariate analysis were used to assess the serum metabolic alteration, identify biomarkers and pathways in response to the C. cochlearium administration.

Results

After 17 weeks of diet intervention, body weight gain of CC group (fed with a high-fat diet supplemented with C. cochlearium) showed a 21.86% reduction from the high-fat diet (HF) control group (P < 0.001), which was specifically reflected on the significantly lowered fat mass (CC vs HF, 17.19 g vs 22.86 g, P < 0.0001) and fat percentage (CC vs HF, 41.25% vs 47.10%, P < 0.0001), and increased lean percentage (CC vs HF, 46.63% vs 43.72%, P < 0.05). C. cochlearium administration significantly reduced fasting blood glucose from week 8 (P < 0.05 or 0.01), and eventually improved insulin sensitivity (HOMA-IR, CC vs HF, 63.77 vs 143.13, P < 0.05). Overall lowered levels of SCFAs were observed in the gut content of CC group. Metabolomic analysis enabled the identification of 53 discriminatory metabolites and 24 altered pathways between CC and HF groups. In particularly, most of the pathway-matched metabolites showed positive correlations with body weight, which included glutamate, phenylalanine, ornithine, PCs, LPCs, AcCas, proline, 5,6-dihydrouracil, pyroglutamic acid, and 1-pyrroline-4-hydroxy-2-carboxylate.

Conclusions

The beneficial effects of C. cochlearium could be related to its ability to restore certain obesity-driven biomarkers and pathways, especially downregulating pathways related to specific amino acids, PCs, LPCs and AcCas. Further research is warranted to investigate related metabolites and metabolic pathways. C. cochlearium may be developed as a promising new probiotic for the prevention or alleviation of obesity and diabetes in human.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Change history

References

  1. World Health Organization (2018) Obesity and overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 15 Sept 2021

  2. Sanz Y, Santacruz A, Gauffin P (2010) Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc 69:434–441. https://doi.org/10.1017/S0029665110001813

    CAS  Article  PubMed  Google Scholar 

  3. Muller TD, Clemmensen C, Finan B, DiMarchi RD, Tschop MH (2018) Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol Rev 70:712–746. https://doi.org/10.1124/pr.117.014803

    CAS  Article  PubMed  Google Scholar 

  4. Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376:254–266. https://doi.org/10.1056/NEJMra1514009

    CAS  Article  PubMed  Google Scholar 

  5. Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab. https://doi.org/10.1186/s12986-016-0067-0

    Article  Google Scholar 

  6. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904. https://doi.org/10.1152/physrev.00045.2009

    CAS  Article  PubMed  Google Scholar 

  7. Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(Suppl 2):S58-61. https://doi.org/10.1086/523341

    Article  PubMed  Google Scholar 

  8. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339. https://doi.org/10.1136/gutjnl-2015-309990

    Article  PubMed  Google Scholar 

  9. Rouxinol-Dias AL, Pinto AR, Janeiro C, Rodrigues D, Moreira M, Dias J et al (2016) Probiotics for the control of obesity—its effect on weight change. Porto Biomed J 1:12–24. https://doi.org/10.1016/j.pbj.2016.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Raoult D (2009) Probiotics and obesity: a link? Nat Rev Microbiol 7:616. https://doi.org/10.1038/nrmicro2209

    CAS  Article  PubMed  Google Scholar 

  11. Chang CS, Ruan JW, Kao CY (2019) An overview of microbiome based strategies on anti-obesity. Kaohsiung J Med Sci 35:7–16. https://doi.org/10.1002/kjm2.12010

    Article  PubMed  Google Scholar 

  12. Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM et al (2016) Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbi. https://doi.org/10.1038/npjbiofilms.2016.9

    Article  Google Scholar 

  13. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517. https://doi.org/10.2337/db08-1637

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Chen W, Zhang S, Wu J, Ye T, Wang S, Wang P et al (2020) Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta 507:236–241. https://doi.org/10.1016/j.cca.2020.04.037

    CAS  Article  PubMed  Google Scholar 

  15. Fu X, Liu Z, Zhu C, Mou H, Kong Q (2019) Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr 59:S130–S152. https://doi.org/10.1080/10408398.2018.1542587

    CAS  Article  PubMed  Google Scholar 

  16. Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15:2631–2641. https://doi.org/10.1111/1462-2920.12173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Sanchez Ramos L, Rodloff AC (2018) Identification of Clostridium species using the VITEK((R)) MS. Anaerobe 54:217–223. https://doi.org/10.1016/j.anaerobe.2018.01.007

    CAS  Article  PubMed  Google Scholar 

  18. Ling Z, Liu X, Cheng Y, Luo Y, Yuan L, Li L et al (2015) Clostridium butyricum combined with Bifidobacterium infantis probiotic mixture restores fecal microbiota and attenuates systemic inflammation in mice with antibiotic-associated diarrhea. Biomed Res Int. https://doi.org/10.1155/2015/582048

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun YY, Li M, Li YY, Li LX, Zhai WZ, Wang P et al (2018) The effect of Clostridium butyricum on symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. Sci Rep. https://doi.org/10.1038/s41598-018-21241-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shang H, Sun J, Chen YQ (2016) Clostridium butyricum CGMCC0313.1 modulates lipid profile, insulin resistance and colon homeostasis in obese mice. PLoS ONE 11:e0154373. https://doi.org/10.1371/journal.pone.0154373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Jia L, Li D, Feng N, Shamoon M, Sun Z, Ding L et al (2017) Anti-diabetic effects of Clostridium butyricum CGMCC0313.1 through promoting the growth of gut butyrate-producingbacteria in type 2 diabetic mice. Sci Rep. https://doi.org/10.1038/s41598-017-07335-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buckel W, Barker H (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117:1248–1260. https://doi.org/10.1128/jb.117.3.1248-1260.1974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Leutbecher U, Böcher R, Linder D, BUCKEL W (1992) Glutamate mutase from Clostridium cochlearium: purification, cobamide content and stereospecific inhibitors. Eur J Biochem 205:759–765. https://doi.org/10.1111/j.1432-1033.1992.tb16840.x

    CAS  Article  PubMed  Google Scholar 

  24. Lee W, Fujisawa T, Kawamura S, Itoh K, Mitsuoka T (1991) Isolation and identification of clostridia from the intestine of laboratory animals. Lab Anim 25:9–15. https://doi.org/10.1258/002367791780808158

    CAS  Article  PubMed  Google Scholar 

  25. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen M-L, Bolte E et al (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35:S6-16. https://doi.org/10.1086/341914

    Article  PubMed  Google Scholar 

  26. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12:304–314. https://doi.org/10.1111/j.1462-2920.2009.02066.x

    CAS  Article  PubMed  Google Scholar 

  28. Ippagunta SM, Kharitonenkov A, Adams AC, Hillgartner FB (2018) Cholic acid supplementation of a high-fat obesogenic diet suppresses hepatic triacylglycerol accumulation in mice via a fbroblast growth factor 21–dependent mechanism. J Nutr 148:510–517. https://doi.org/10.1093/jn/nxy022

    Article  PubMed  Google Scholar 

  29. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703. https://doi.org/10.1038/nprot.2007.376

    CAS  Article  PubMed  Google Scholar 

  30. Kaspar H (2009) Amino acid analysis in biological fluids by GC-MS. PhD, University of Regensburg

  31. Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q et al (2013) A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 9:818–827. https://doi.org/10.1007/s11306-013-0500-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083. https://doi.org/10.1038/nprot.2011.335

    CAS  Article  PubMed  Google Scholar 

  33. Lu D, Xue L, Feng C, Wu C, Xie C, Gonzalez FJ et al (2019) A systemic workflow for profiling metabolome and lipidome in tissue. J Chromatogr A 1589:105–115. https://doi.org/10.1016/j.chroma.2018.12.061

    CAS  Article  PubMed  Google Scholar 

  34. Gong J, Feng Z, Peterson AL, Carr JF, Lu X, Zhao H et al (2021) The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight 6:e137594. https://doi.org/10.1172/jci.insight.137594

    Article  PubMed Central  Google Scholar 

  35. Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Matsushita K (2017) Butyrate production under aerobic growth conditions by engineered Escherichia coli. J Biosci Bioeng 123:562–568. https://doi.org/10.1016/j.jbiosc.2016.12.008

    CAS  Article  PubMed  Google Scholar 

  36. Jing L, Guigonis J-M, Borchiellini D, Durand M, Pourcher T, Ambrosetti D (2019) LC-MS based metabolomic profiling for renal cell carcinoma histologic subtypes. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-52059-y

    CAS  Article  Google Scholar 

  37. Borga M, West J, Bell JD, Harvey NC, Romu T, Heymsfield SB et al (2018) Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med 66:1–9. https://doi.org/10.1136/jim-2018-000722

    Article  PubMed  PubMed Central  Google Scholar 

  38. Segal KR, Dunaif A, Gutin B, Albu J, Nyman A, Pi-Sunyer FX (1987) Body composition, not body weight, is related to cardiovascular disease risk factors and sex hormone levels in men. J Clin Invest 80:1050–1055. https://doi.org/10.1172/JCI113159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Hardy OT, Czech MP, Corvera S (2012) What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19:81–87. https://doi.org/10.1097/MED.0b013e3283514e13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126:126–132. https://doi.org/10.1161/CIRCULATIONAHA.111.087213

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jéquier E (2002) Pathways to obesity. Int J Obes 26:S12–S17. https://doi.org/10.1038/sj.ijo.0802123

    CAS  Article  Google Scholar 

  42. Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299. https://doi.org/10.1017/S0954422410000168

    CAS  Article  PubMed  Google Scholar 

  43. Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab 13:1–13. https://doi.org/10.1186/s12986-016-0067-0

    CAS  Article  Google Scholar 

  44. Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M (2016) The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis 15:1–8. https://doi.org/10.1186/s12944-016-0278-4

    CAS  Article  Google Scholar 

  45. Anand S, Kaur H, Mande SS (2016) Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front Microbiol 7:1945. https://doi.org/10.3389/fmicb.2016.01945

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779. https://doi.org/10.1136/gut.22.9.763

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Butel MJ (2014) Probiotics, gut microbiota and health. Med Mal Infect 44:1–8. https://doi.org/10.1016/j.medmal.2013.10.002

    Article  PubMed  Google Scholar 

  48. Yan F, Polk DB (2010) Probiotics: progress toward novel therapies for intestinal diseases. Curr Opin Gastroenterol 26:95–101. https://doi.org/10.1097/MOG.0b013e328335239a

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu H, Wang J, He T, Becker S, Zhang G, Li D et al (2018) Butyrate: a double-edged sword for health? Adv Nutr 9:21–29

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6:110–119. https://doi.org/10.4291/wjgp.v6.i4.110

    Article  PubMed  PubMed Central  Google Scholar 

  51. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    CAS  Article  Google Scholar 

  52. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever T, Comelli E (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. https://doi.org/10.1038/nutd.2014.23

    Article  PubMed  PubMed Central  Google Scholar 

  53. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  54. Murphy E, Cotter P, Healy S, Marques TM, O’sullivan O, Fouhy F et al (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635–1642. https://doi.org/10.1136/gut.2010.215665

    CAS  Article  PubMed  Google Scholar 

  55. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195. https://doi.org/10.1038/oby.2009.167

    Article  PubMed  Google Scholar 

  56. Tulipani S, Palau-Rodriguez M, Alonso AM, Cardona F, Marco-Ramell A, Zonja B et al (2016) Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes. Clin Chim Acta 463:53–61. https://doi.org/10.1016/j.cca.2016.10.005

    CAS  Article  PubMed  Google Scholar 

  57. Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M et al (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36:648–655. https://doi.org/10.2337/dc12-0895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Sailer M, Dahlhoff C, Giesbertz P, Eidens MK, de Wit N, Rubio-Aliaga I et al (2013) Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome. PLoS ONE 8:e63950. https://doi.org/10.1371/journal.pone.0063950

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Lent-Schochet D, McLaughlin M, Ramakrishnan N, Jialal I (2019) Exploratory metabolomics of metabolic syndrome: a status report. World J Diabetes 10:23. https://doi.org/10.4239/wjd.v10.i1.23

    Article  PubMed  PubMed Central  Google Scholar 

  60. Monti LD, Casiraghi MC, Setola E, Galluccio E, Pagani MA, Quaglia L et al (2013) L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism 62:255–264. https://doi.org/10.1016/j.metabol.2012.08.004

    CAS  Article  PubMed  Google Scholar 

  61. Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12:668. https://doi.org/10.1038/nrendo.2016.98

    CAS  Article  PubMed  Google Scholar 

  62. Gross RW, Han X (2007) Lipidomics in diabetes and the metabolic syndrome. Meth Enzymol 433:73–90. https://doi.org/10.1016/S0076-6879(07)33004-8

    CAS  Article  Google Scholar 

  63. Syme C, Czajkowski S, Shin J, Abrahamowicz M, Leonard G, Perron M et al (2016) Glycerophosphocholine metabolites and cardiovascular disease risk factors in adolescents: a cohort study. Circulation 134:1629–1636. https://doi.org/10.1161/CIRCULATIONAHA.116.022993

    CAS  Article  PubMed  Google Scholar 

  64. Cole LK, Vance JE, Vance DE (2012) Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta, Mol Cell Biol Lipids 1821:754–761. https://doi.org/10.1016/j.bbalip.2011.09.009

    CAS  Article  Google Scholar 

  65. Law S-H, Chan M-L, Marathe GK, Parveen F, Chen C-H, Ke L-Y (2019) An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci 20:1149. https://doi.org/10.3390/ijms20051149

    CAS  Article  PubMed Central  Google Scholar 

  66. Heimerl S, Fischer M, Baessler A, Liebisch G, Sigruener A, Wallner S et al (2014) Alterations of plasma lysophosphatidylcholine species in obesity and weight loss. PLoS ONE 9:e111348. https://doi.org/10.1371/journal.pone.0111348

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA et al (2012) Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE 7:e41456. https://doi.org/10.1371/journal.pone.0041456

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, Donapetry-García C, Pedre-Piñeiro AM (2017) Significance of L-carnitine for human health. IUBMB Life 69:578–594. https://doi.org/10.1002/iub.1646

    CAS  Article  PubMed  Google Scholar 

  69. Guasch-Ferré M, Ruiz-Canela M, Li J, Zheng Y, Bulló M, Wang DD et al (2019) Plasma acylcarnitines and risk of type 2 diabetes in a Mediterranean population at high cardiovascular risk. J Clin Endocrinol Metab 104:1508–1519. https://doi.org/10.1210/jc.2018-01000

    Article  PubMed  Google Scholar 

  70. Hoppel CL, Genuth SM (1982) Urinary excretion of acetylcarnitine during human diabetic and fasting ketosis. Am J Physiol Endocrinol Metab 243:E168–E172. https://doi.org/10.1152/ajpendo.1982.243.2.E168

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Systems Mass Spectrometry Core (SyMS-C) at the Georgia Institute of Technology for the LC-MS data acquisition.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Responsibilities were as follows: KZ and WZ designed the research, provided essential materials, and edited the manuscript. FY, WZ, PE and QA conducted the research. XJ provided essential instruments for the LC–MS data acquisition. FY analyzed the data and wrote the manuscript. KZ had primary responsibility for the final content. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Kequan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they had no conflict of interest.

Ethical approval

The protocol of animal study was approved by the Institutional Animal Care and Use Committee (IACUC) at the Wayne State University, Detroit, USA.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 170 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhu, W., Edirisuriya, P. et al. Characterization of metabolites and biomarkers for the probiotic effects of Clostridium cochlearium on high-fat diet-induced obese C57BL/6 mice. Eur J Nutr 61, 2217–2229 (2022). https://doi.org/10.1007/s00394-022-02840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02840-z

Keywords

  • C. cochlearium
  • Body weight control
  • Insulin sensitivity
  • Metabolomic analysis
  • High-fat diet-induced obese C57BL/6 mice