Skip to main content

Advertisement

Log in

Association of dietary and plasma carotenoids with urinary F2-isoprostanes

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Carotenoids may protect against chronic diseases including cancer and cardiometabolic disease by mitigating oxidative stress and/or inflammation. We cross-sectionally evaluated associations between carotenoids and biomarkers of oxidative stress or inflammation.

Methods

From 2003 to 2009, the Sister Study enrolled 50,884 breast cancer-free US women aged 35–74. Post-menopausal participants (n = 512) were randomly sampled to measure carotenoids and biomarkers of oxidative stress. Dietary carotenoid consumption was assessed using a validated 110-item Block 1998 food frequency questionnaire; use of β-carotene-containing supplements was also assessed. Plasma carotenoids were quantified, adjusting for batch. Urinary markers of lipid peroxidation, 8-iso-prostaglandin F (8-iso-PGF) and its metabolite (8-iso-PGF-M) were also measured. Since the biomarker 8-iso-PGF can reflect both oxidative stress and inflammation, we used a modeled 8-iso-PGF to prostaglandin F ratio approach to distinguish effects reflecting oxidative stress versus inflammation. Multivariable linear regression was used to assess the associations of dietary and plasma carotenoids with the estimated biomarker concentrations.

Results

Total plasma carotenoids were inversely associated with 8-iso-PGF-M concentrations (P for trend across quartiles = 0.009). Inverse trends associations were also seen for α-carotene and β-carotene. In contrast, lutein/zeaxanthin showed associations with both 8-iso-PGF and 8-iso-PGF-M concentrations. The inverse association for total carotenoids appeared to be specific for oxidative stress (chemical 8-iso-PGF; Phighest vs. lowest quartile = 0.04 and P for trend across quartiles = 0.02). The pattern was similar for α-carotene. However, lutein/zeaxanthin tended to have a stronger association with enzymatic 8-iso-PGF, suggesting an additional anti-inflammatory effect. Supplemental β-carotene was inversely associated with both 8-iso-PGF and 8-iso-PGF-M concentrations, as well as with both chemical and enzymatic 8-iso-PGF. Dietary carotenoids were not associated with either biomarker.

Conclusion

Plasma carotenoids and supplemental β-carotene were associated with lower concentrations of 8-iso-PGF metabolite. Plasma carotenoids associations may reflect antioxidant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data described in the manuscript, code book, and analytic code will be made available upon request.

References

  1. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacolog Res 55(3):207–216. https://doi.org/10.1016/j.phrs.2007.01.012

    Article  CAS  Google Scholar 

  2. Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290–1324. https://doi.org/10.1111/bph.13625

    Article  CAS  PubMed  Google Scholar 

  3. Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress–implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res (New York, NY) 34(11):907–929. https://doi.org/10.1016/j.nutres.2014.07.010

    Article  CAS  Google Scholar 

  4. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18-36. https://doi.org/10.1152/ajpregu.00327.2006

    Article  CAS  PubMed  Google Scholar 

  5. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Libby P (2006) Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 83(2):456S-460S. https://doi.org/10.1093/ajcn/83.2.456S%JTheAmericanJournalofClinicalNutrition

    Article  CAS  PubMed  Google Scholar 

  7. Black CN, Penninx BWJH, Bot M, Odegaard AO, Gross MD, Matthews KA, Jacobs DR (2016) Oxidative stress, anti-oxidants and the cross-sectional and longitudinal association with depressive symptoms: results from the CARDIA study. Transl Psychiatry 6(2):e743–e743. https://doi.org/10.1038/tp.2016.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bohn T (2019) Carotenoids and markers of oxidative stress in human observational studies and intervention trials: implications for chronic diseases. Antioxidants (Basel, Switzerland) 8(6):179. https://doi.org/10.3390/antiox8060179

    Article  CAS  Google Scholar 

  9. Mayne ST (2003) Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr 133(Suppl 3):933s–940s

    Article  CAS  Google Scholar 

  10. Il’yasova D, Scarbrough P, Spasojevic I (2012) Urinary biomarkers of oxidative status. Clin Chim Acta 413(19–20):1446–1453. https://doi.org/10.1016/j.cca.2012.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu X, Cai H, Xiang YB, Cai Q, Yang G, Liu D, Sanchez S, Zheng W, Milne G, Shu XO (2010) Intra-person variation of urinary biomarkers of oxidative stress and inflammation. Cancer Epidemiol Biomarkers Prev 19(4):947–952. https://doi.org/10.1158/1055-9965.epi-10-0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dorjgochoo T, Gao YT, Chow WH, Shu XO, Yang G, Cai Q, Rothman N, Cai H, Li H, Deng X, Franke A, Roberts LJ, Milne G, Zheng W, Dai Q (2012) Major metabolite of F2-isoprostane in urine may be a more sensitive biomarker of oxidative stress than isoprostane itself. Am J Clin Nutr 96(2):405–414. https://doi.org/10.3945/ajcn.112.034918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van ’t Erve Lih Kadiiska Deterding Eling Mason TJFBMBLJTERP (2015) Reinterpreting the best biomarker of oxidative stress: the 8-iso-PGF(2alpha)/PGF(2alpha) ratio distinguishes chemical from enzymatic lipid peroxidation. Free Radical Biol Med 83:245–251. https://doi.org/10.1016/j.freeradbiomed.2015.03.004

    Article  CAS  Google Scholar 

  14. Van’t Erve TJ, Lih FB, Jelsema C, Deterding LJ, Eling TE, Mason RP, Kadiiska MB (2016) Reinterpreting the best biomarker of oxidative stress: the 8-iso-prostaglandin F2alpha/prostaglandin F2alpha ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radical Biol Med 95:65–73. https://doi.org/10.1016/j.freeradbiomed.2016.03.001

    Article  CAS  Google Scholar 

  15. Sandler DP, Hodgson ME, Deming-Halverson SL, Juras PS, D’Aloisio AA, Suarez LM, Kleeberger CA, Shore DL, DeRoo LA, Taylor JA, Weinberg CR (2017) The sister study cohort: baseline methods and participant characteristics. Environ Health Perspect 125(12):127003. https://doi.org/10.1289/ehp1923

    Article  PubMed  PubMed Central  Google Scholar 

  16. D’Aloisio AA, Nichols HB, Hodgson ME, Deming-Halverson SL, Sandler DP (2017) Validity of self-reported breast cancer characteristics in a nationwide cohort of women with a family history of breast cancer. BMC Cancer 17(1):692. https://doi.org/10.1186/s12885-017-3686-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berg G, Kohlmeier L, Brenner H (1997) Use of oral contraceptives and serum beta-carotene. Eur J Clin Nutr 51(3):181–187

    Article  CAS  Google Scholar 

  18. Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124(3):453–469

    Article  CAS  Google Scholar 

  19. Block G, Woods M, Potosky A, Clifford C (1990) Validation of a self-administered diet history questionnaire using multiple diet records. J Clin Epidemiol 43(12):1327–1335. https://doi.org/10.1016/0895-4356(90)90099-b

    Article  CAS  PubMed  Google Scholar 

  20. Bowman SA, Clemens JC, Friday JE, Thoerig RC, Moshfegh AJ (2014) Food Patterns equivalents database 2011–12: methodology and user guide. Food Surveys Research Group, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland

  21. Craft NE (1996) High resolution HPLC method for the simultaneous analysis of carotenoids, retinoids, and tocopherols. FASEB J 10(3):A527

    Google Scholar 

  22. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/l45vit_c_met_vitAE_carotenoids.pdf

  23. Milne GL, Sanchez SC, Musiek ES, Morrow JD (2007) Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat Protoc 2(1):221–226. https://doi.org/10.1038/nprot.2006.375

    Article  CAS  PubMed  Google Scholar 

  24. Milne GL, Gao B, Terry ES, Zackert WE, Sanchez SC (2013) Measurement of F2-isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Radical Biol Med 59:36–44. https://doi.org/10.1016/j.freeradbiomed.2012.09.030

    Article  CAS  Google Scholar 

  25. O’Brien KM, Upson K, Cook NR, Weinberg CR (2016) Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect 124(2):220–227. https://doi.org/10.1289/ehp.1509693

    Article  CAS  PubMed  Google Scholar 

  26. Praticó D, FitzGerald GA (1996) Generation of 8-epiprostaglandin F2alpha by human monocytes. Discriminate production by reactive oxygen species and prostaglandin endoperoxide synthase-2. J Biol Chem 271(15):8919–8924. https://doi.org/10.1074/jbc.271.15.8919

    Article  PubMed  Google Scholar 

  27. Rosen EM, van ’t Erve TJ, Boss J, Sathyanarayana S, Barrett ES, Nguyen RHN, Bush NR, Milne GL, McElrath TF, Swan SH, Ferguson KK (2019) Urinary oxidative stress biomarkers and accelerated time to spontaneous delivery. Free Radical Biol Med 130:419–425. https://doi.org/10.1016/j.freeradbiomed.2018.11.011

    Article  CAS  Google Scholar 

  28. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338(1):668–676. https://doi.org/10.1016/j.bbrc.2005.08.072

    Article  CAS  PubMed  Google Scholar 

  29. Thomson CA, Stendell-Hollis NR, Rock CL, Cussler EC, Flatt SW, Pierce JP (2007) Plasma and dietary carotenoids are associated with reduced oxidative stress in women previously treated for breast cancer. Cancer Epidemiol Biomarkers Prev 16(10):2008–2015. https://doi.org/10.1158/1055-9965.Epi-07-0350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L (2002) Factors associated with oxidative stress in human populations. Am J Epidemiol 156(3):274–285. https://doi.org/10.1093/aje/kwf029

    Article  PubMed  Google Scholar 

  31. Hozawa A, Jacobs DR Jr, Steffes MW, Gross MD, Steffen LM, Lee DH (2007) Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: the Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study. Clin Chem 53(3):447–455. https://doi.org/10.1373/clinchem.2006.074930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morrow JD, Zackert WE, Yang JP, Kurhts EH, Callewaert D, Dworski R, Kanai K, Taber D, Moore K, Oates JA, Roberts LJ (1999) Quantification of the major urinary metabolite of 15–F2t-isoprostane (8-iso-PGF2alpha) by a stable isotope dilution mass spectrometric assay. Anal Biochem 269(2):326–331. https://doi.org/10.1006/abio.1999.4008

    Article  CAS  PubMed  Google Scholar 

  33. Milne GL, Yin H, Brooks JD, Sanchez S, Jackson Roberts L, Morrow JD (2007) Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Method Enzymol 433:113–126. https://doi.org/10.1016/s0076-6879(07)33006-1

    Article  CAS  Google Scholar 

  34. Chung RWS, Leanderson P, Lundberg AK, Jonasson L (2017) Lutein exerts anti-inflammatory effects in patients with coronary artery disease. Atherosclerosis 262:87–93. https://doi.org/10.1016/j.atherosclerosis.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  35. Kim J-H, Na H-J, Kim C-K, Kim J-Y, Ha K-S, Lee H, Chung H-T, Kwon HJ, Kwon Y-G, Kim Y-M (2008) The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: Role of H2O2 in NF-κB activation. Free Radical Biol Med 45(6):885–896. https://doi.org/10.1016/j.freeradbiomed.2008.06.019

    Article  CAS  Google Scholar 

  36. Ahn YJ, Kim H (2021) Lutein as a modulator of oxidative stress-mediated inflammatory diseases. Antioxidants (Basel, Switzerland) 10(9):1448. https://doi.org/10.3390/antiox10091448

    Article  CAS  Google Scholar 

  37. Kim Y, Seo JH, Kim H (2011) β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci Vitaminol (Tokyo) 57(3):216–223. https://doi.org/10.3177/jnsv.57.216

    Article  CAS  Google Scholar 

  38. Polidori MC, Praticó D, Savino K, Rokach J, Stahl W, Mecocci P (2004) Increased F2 isoprostane plasma levels in patients with congestive heart failure are correlated with antioxidant status and disease severity. J Card Fail 10(4):334–338. https://doi.org/10.1016/j.cardfail.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  39. Kataria Y, Deaton RJ, Enk E, Jin M, Petrauskaite M, Dong L, Goldenberg JR, Cotler SJ, Jensen DM, van Breemen RB, Gann PH (2016) Retinoid and carotenoid status in serum and liver among patients at high-risk for liver cancer. BMC Gastroenterol 16(1):30. https://doi.org/10.1186/s12876-016-0432-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haldar S, Rowland IR, Barnett YA, Bradbury I, Robson PJ, Powell J, Fletcher J (2007) Influence of habitual diet on antioxidant status: a study in a population of vegetarians and omnivores. Eur J Clin Nutr 61(8):1011–1022. https://doi.org/10.1038/sj.ejcn.1602615

    Article  CAS  PubMed  Google Scholar 

  41. Kim Y, Kim YJ, Lim Y, Oh B, Kim JY, Bouwman J, Kwon O (2018) Combination of diet quality score, plasma carotenoids, and lipid peroxidation to monitor oxidative stress. Oxid Med Cell Longev 2018:8601028. https://doi.org/10.1155/2018/8601028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aune D, Chan DS, Vieira AR, Navarro Rosenblatt DA, Vieira R, Greenwood DC, Norat T (2012) Dietary compared with blood concentrations of carotenoids and breast cancer risk: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 96(2):356–373. https://doi.org/10.3945/ajcn.112.034165

    Article  CAS  PubMed  Google Scholar 

  43. Anderson C, Milne GL, Sandler DP, Nichols HB (2016) Oxidative stress in relation to diet and physical activity among premenopausal women. Br J Nutr 116(8):1416–1424. https://doi.org/10.1017/s0007114516003226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carroll YL, Corridan BM, Morrissey PA (1999) Carotenoids in young and elderly healthy humans: dietary intakes, biochemical status and diet-plasma relationships. Eur J Clin Nutr 53(8):644–653. https://doi.org/10.1038/sj.ejcn.1600827

    Article  CAS  PubMed  Google Scholar 

  45. Hermsdorff HHM, Puchau B, Volp ACP, Barbosa KBF, Bressan J, Zulet MÁ, Martínez JA (2011) Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab 8(1):59. https://doi.org/10.1186/1743-7075-8-59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Barrett Welch, PhD, and Jacob Kresovich, PhD, (Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health) for providing their helpful comments.

Funding

This work was supported by the Intramural Research Program of the National Institutes of Health, the National Institute of Environmental Health Sciences [Z01-ES044005] and NIH Office of Dietary Supplements Research Scholars Program.

Author information

Authors and Affiliations

Authors

Contributions

Y-MP and DPS: designed the analysis; Y-MP: conducted the analysis, interpreted the data, and wrote the manuscript; all the authors: assisted in interpreting the data and edited the manuscript; Y-MP and DPS: had final responsibility for final content; and all the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yong-Moon Mark Park or Dale P. Sandler.

Ethics declarations

Conflict of interest

None.

Ethical approval

The Sister Study is overseen by the NIH Institutional Review Board.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YM.M., Lilyquist, J., van‘t Erve, T.J. et al. Association of dietary and plasma carotenoids with urinary F2-isoprostanes. Eur J Nutr 61, 2711–2723 (2022). https://doi.org/10.1007/s00394-022-02837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02837-8

Keywords

Navigation