Skip to main content

Red meat consumption and all-cause and cardiovascular mortality: results from the UK Biobank study

Abstract

Purpose

To investigate the prospective associations between red meat consumption and all-cause and cardiovascular diseases (CVD) mortality, and to assess the modification effects of lifestyle and genetic risk factors.

Methods

180,642 individuals free of CVD or cancer were enrolled from 2006 to 2010 and followed up to 2018 in the UK Biobank. Information on demographics, lifestyles, and medical history was collected through a baseline touchscreen questionnaire. The information on diet was collected through a single touchscreen food-frequency questionnaire. A total of ten single-nucleotide polymorphisms were used to calculate the genetic risk score (GRS) of trimethylamine N-oxide (TMAO), a gut microbiota metabolite from red meat. Adjusted Cox proportional hazard regression models were used to assess the association of red meat consumption with mortality.

Results

We documented 3596 deaths [655 CVD deaths, 285 coronary heart disease (CHD) deaths, and 149 stroke deaths] during median 8.6 years of follow-up. Compared with the lowest red meat intake (< 1.5 times/week), the highest red meat intake (≥ 3.0 times/week) was associated with a 20%, 53%, and 101% elevated risk for CVD, CHD, and stroke mortality (P for trend = 0.04, 0.007, and 0.02, respectively), but not all-cause mortality. We found that the associations between red meat intake and mortality were not modified by dietary and lifestyle factors, as well as TMAO GRS. In addition, substitution analyses showed that a decrease in red meat consumption and an increase in the consumption of poultry or cereal was significantly associated with 9%–16% lower CVD or CHD mortality risk.

Conclusion

Our results indicated that red meat consumption was associated with higher risks of CVD, CHD, and stroke mortality, and the associations were not modified by lifestyle and genetic risk factors. Replacing red meat by poultry or cereal was related to lower risks of CVD and CHD mortality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Daniel CR, Cross AJ, Koebnick C, Sinha R (2011) Trends in meat consumption in the USA. Public Health Nutr 14:575–583

    PubMed  Article  Google Scholar 

  2. Micha R, Khatibzadeh S, Shi P, Andrews KG, Engell RE, Mozaffarian D (2015) Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 5:e008705

    PubMed  PubMed Central  Article  Google Scholar 

  3. Qian F, Riddle MC, Wylie-Rosett J, Hu FB (2020) Red and processed meats and health risks: how strong is the evidence? Diabetes Care 43:265–271

    PubMed  PubMed Central  Article  Google Scholar 

  4. Micha R, Wallace SK, Mozaffarian D (2010) Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 121:2271–2283

    PubMed  PubMed Central  Article  Google Scholar 

  5. Kim K, Hyeon J, Lee SA, Kwon SO, Lee H, Keum N, Lee JK, Park SM (2017) Role of total, red, processed, and white meat consumption in stroke incidence and mortality: a systematic review and meta-analysis of prospective cohort studies. J Am Heart Assoc 6:9

    Google Scholar 

  6. Al-Shaar L, Satija A, Wang DD, Rimm EB, Smith-Warner SA, Stampfer MJ, Hu FB, Willett WC (2020) Red meat intake and risk of coronary heart disease among US men: prospective cohort study. BMJ 371:m4141

    PubMed  PubMed Central  Article  Google Scholar 

  7. Zhang J, Hayden K, Jackson R, Schutte R (2021) Association of red and processed meat consumption with cardiovascular morbidity and mortality in participants with and without obesity: a prospective cohort study. Clin Nutr 40:3643–3649

    PubMed  Article  Google Scholar 

  8. Bradbury KE, Murphy N, Key TJ (2019) Diet and colorectal cancer in UK Biobank: a prospective study. Int J Epidemiol 49:246

    PubMed Central  Article  Google Scholar 

  9. Guo J, Wei W, Zhan L (2015) Red and processed meat intake and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 151:191–198

    CAS  PubMed  Article  Google Scholar 

  10. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, Hu FB (2011) Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr 94:1088–1096

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Etemadi A, Sinha R, Ward MH, Graubard BI, Inoue-Choi M, Dawsey SM, Abnet CC (2017) Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357:j1957

    PubMed  PubMed Central  Article  Google Scholar 

  12. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Stampfer MJ, Willett WC, Hu FB (2012) Red meat consumption and mortality: results from 2 prospective cohort studies. Arch Intern Med 172:555–563

    PubMed  PubMed Central  Article  Google Scholar 

  13. Rohrmann S, Overvad K, Bueno-de-Mesquita HB, Jakobsen MU, Egeberg R, Tjonneland A, Nailler L, Boutron-Ruault MC, Clavel-Chapelon F, Krogh V, Palli D, Panico S, Tumino R, Ricceri F, Bergmann MM, Boeing H, Li K, Kaaks R, Khaw KT, Wareham NJ, Crowe FL, Key TJ, Naska A, Trichopoulou A, Trichopoulos D, Leenders M, Peeters PH, Engeset D, Parr CL, Skeie G, Jakszyn P, Sanchez MJ, Huerta JM, Redondo ML, Barricarte A, Amiano P, Drake I, Sonestedt E, Hallmans G, Johansson I, Fedirko V, Romieux I, Ferrari P, Norat T, Vergnaud AC, Riboli E, Linseisen J (2013) Meat consumption and mortality—results from the European Prospective Investigation into Cancer and Nutrition. BMC Med 11:63

    PubMed  PubMed Central  Article  Google Scholar 

  14. Abete I, Romaguera D, Vieira AR, Lopez de Munain A, Norat T (2014) Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br J Nutr 112:762–775

    CAS  PubMed  Article  Google Scholar 

  15. Larsson SC, Orsini N (2014) Red meat and processed meat consumption and all-cause mortality: a meta-analysis. Am J Epidemiol 179:282–289

    PubMed  Article  Google Scholar 

  16. Wang X, Lin X, Ouyang YY, Liu J, Zhao G, Pan A, Hu FB (2016) Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies. Public Health Nutr 19:893–905

    PubMed  Article  Google Scholar 

  17. Zeraatkar D, Han MA, Guyatt GH, Vernooij RWM, El Dib R, Cheung K, Milio K, Zworth M, Bartoszko JJ, Valli C, Rabassa M, Lee Y, Zajac J, Prokop-Dorner A, Lo C, Bala MM, Alonso-Coello P, Hanna SE, Johnston BC (2019) Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: a systematic review and meta-analysis of cohort studies. Ann Intern Med 171:703–710

    PubMed  Article  Google Scholar 

  18. Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, Bechthold A, Schlesinger S, Boeing H (2017) Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 105:1462–1473

    CAS  PubMed  Google Scholar 

  19. Klurfeld DM (2015) Research gaps in evaluating the relationship of meat and health. Meat Sci 109:86–95

    PubMed  Article  Google Scholar 

  20. Bellavia A, Stilling F, Wolk A (2016) High red meat intake and all-cause cardiovascular and cancer mortality: is the risk modified by fruit and vegetable intake? Am J Clin Nutr 104:1137–1143

    CAS  PubMed  Article  Google Scholar 

  21. Wang T, Heianza Y, Sun D, Huang T, Ma W, Rimm EB, Manson JE, Hu FB, Willett WC, Qi L (2018) Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies. BMJ 360:j5644

    PubMed  PubMed Central  Article  Google Scholar 

  22. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, Qi L (2012) Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med 367:1387–1396

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, Liang L, Curhan GC, Pasquale LR, Wiggs JL, De Vivo I, Chan AT, Choi HK, Tamimi RM, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, Qi L (2014) Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ 348:g1610

    PubMed  PubMed Central  Article  Google Scholar 

  24. Tang WHW, Wang ZE, Levison BS, Koeth RA, Britt EB, Fu XM, Wu YP, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L (2017) Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc 6:7

    Article  Google Scholar 

  27. Qi J, You T, Li J, Pan T, Xiang L, Han Y, Zhu L (2018) Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. J Cell Mol Med 22:185–194

    CAS  PubMed  Article  Google Scholar 

  28. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, Ghorbani A, Shi X, Helenius IT, O’Donnell CJ, Souza AL, Deik A, Pierce KA, Bullock K, Walford GA, Vasan RS, Florez JC, Clish C, Yeh JR, Wang TJ, Gerszten RE (2013) A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab 18:130–143

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12:e1001779

    PubMed  PubMed Central  Article  Google Scholar 

  30. Bradbury KE, Young HJ, Guo W, Key TJ (2018) Dietary assessment in UK Biobank: an evaluation of the performance of the touchscreen dietary questionnaire. J Nutr Sci 7:e6

    PubMed  PubMed Central  Article  Google Scholar 

  31. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, Cortes A, Welsh S, McVean G, Leslie S, Donnelly P, Marchini J (2017) Genome-wide genetic data on ~500,000 UK Biobank participants [published online July 20, 2017]. bioRxiv

  32. Said MA, Verweij N, van der Harst P (2018) Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank Study. JAMA Cardiol 3:693–702

    PubMed  PubMed Central  Article  Google Scholar 

  33. Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, Guiducci C, Perola M, Jula A, Sinisalo J, Lokki ML, Nieminen MS, Melander O, Salomaa V, Peltonen L, Kathiresan S (2010) A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376:1393–1400

    PubMed  PubMed Central  Article  Google Scholar 

  34. Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, Willett WC (2010) Major dietary protein sources and risk of coronary heart disease in women. Circulation 122:876–883

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Sun YB, Liu BY, Snetselaar LG, Robinson JG, Wallace RB, Peterson LL, Bao W (2019) Association of fried food consumption with all cause, cardiovascular, and cancer mortality: prospective cohort study. BMJ 364:5420

    Article  Google Scholar 

  36. Nahab F, Pearson K, Frankel MR, Ard J, Safford MM, Kleindorfer D, Howard VJ, Judd S (2016) Dietary fried fish intake increases risk of CVD: the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Public Health Nutr 19:3327–3336

    PubMed  PubMed Central  Article  Google Scholar 

  37. Margetts BM, Jackson AA (1993) Interactions between people’s diet and their smoking habits: the dietary and nutritional survey of British adults. BMJ 307:1381–1384

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Fogelholm M, Kanerva N, Mannisto S (2015) Association between red and processed meat consumption and chronic diseases: the confounding role of other dietary factors. Eur J Clin Nutr 69:1060–1065

    CAS  PubMed  Article  Google Scholar 

  39. Mensink RP, Katan MB (1990) Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med 323:439–445

    CAS  PubMed  Article  Google Scholar 

  40. Bendinelli B, Palli D, Masala G, Sharp SJ, Schulze MB, Guevara M, van Der AD, Sera F, Amiano P, Balkau B, Barricarte A, Boeing H, Crowe FL, Dahm CC, Dalmeijer G, de Lauzon-Guillain B, Egeberg R, Fagherazzi G, Franks PW, Krogh V, Huerta JM, Jakszyn P, Khaw KT, Li K, Mattiello A, Nilsson PM, Overvad K, Ricceri F, Rolandsson O, Sanchez MJ, Slimani N, Sluijs I, Spijkerman AM, Teucher B, Tjonneland A, Tumino R, van den Berg SW, Forouhi NG, Langeberg C, Feskens EJ, Riboli E, Wareham NJ (2013) Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia 56:47–59

    CAS  PubMed  Article  Google Scholar 

  41. Abbasi J (2019) TMAO and heart disease: the new red meat risk? JAMA 321:2149–2151

    PubMed  Article  Google Scholar 

  42. Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, Trimarco B, Esposito G, Perrino C (2017) Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J 38:2948

    CAS  PubMed  Article  Google Scholar 

  43. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165:111–124

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Heart, Lung, and Blood Institute (HL071981, HL034594, HL126024), the National Institute of Diabetes and Digestive and Kidney Diseases (DK115679, DK091718, DK100383, DK078616), and the Fogarty International Center (TW010790). LQ is a recipient of the American Heart Association Scientist Development Award (0730094 N). LQ is also supported by NIGMS P20GM109036. MW is supported by China Postdoctoral Science Foundation (BX2021021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Qi.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 123 KB)

Supplementary file2 (DOCX 26 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Ma, H., Song, Q. et al. Red meat consumption and all-cause and cardiovascular mortality: results from the UK Biobank study. Eur J Nutr 61, 2543–2553 (2022). https://doi.org/10.1007/s00394-022-02807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02807-0

Keywords

  • Red meat
  • Mortality
  • Effect modification
  • Substitution analysis
  • Prospective cohort study