Skip to main content

Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials

Abstract

Purpose

Maltodextrin (MDX) is a polysaccharide food additive commonly used as oral placebo/control to investigate treatments/interventions in humans. The aims of this study were to appraise the MDX effects on human physiology/gut microbiota, and to assess the validity of MDX as a placebo-control.

Methods

We performed a systematic review of randomized-placebo-controlled clinical trials (RCTs) where MDX was used as an orally consumed placebo. Data were extracted from study results where effects (physiological/microbial) were attributed (or not) to MDX, and from study participant outcomes data, before-and-after MDX consumption, for post-publication ‘re-analysis’ using paired-data statistics.

Results

Of two hundred-sixteen studies on ‘MDX/microbiome’, seventy RCTs (n = 70) were selected for analysis. Supporting concerns regarding the validity of MDX as a placebo, the majority of RCTs (60%, CI 95% = 0.48–0.76; n = 42/70; Fisher-exact p = 0.001, expected < 5/70) reported MDX-induced physiological (38.1%, n = 16/42; p = 0.005), microbial metabolite (19%, n = 8/42; p = 0.013), or microbiome (50%, n = 21/42; p = 0.0001) effects. MDX-induced alterations on gut microbiome included changes in the Firmicutes and/or Bacteroidetes phyla, and Lactobacillus and/or Bifidobacterium species. Effects on various immunological, inflammatory markers, and gut function/permeability were also documented in 25.6% of the studies (n = 10/42). Notably, there was considerable variability in the direction of effects (decrease/increase), MDX dose, form (powder/pill), duration, and disease/populations studied. Overall, only 20% (n = 14/70; p = 0.026) of studies cross-referenced MDX as a justifiable/innocuous placebo, while 2.9% of studies (n = 2/70) acknowledged their data the opposite.

Conclusion

Orally-consumed MDX often (63.9% of RCTs) induces effects on human physiology/gut microbiota. Such effects question the validity of MDX as a placebo-control in human clinical trials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Chronakis IS (1998) On the molecular characteristics, compositional properties, and structural-functional mechanisms of maltodextrins: a review. Crit Rev Food Sci Nutr 38(7):599–637. https://doi.org/10.1080/10408699891274327

    CAS  Article  PubMed  Google Scholar 

  2. Okuma K, Matsuda I (2003) Production of indigestible dextrin from pyrodextrin. J Appl Glycosci 50(3):389–394

    CAS  Article  Google Scholar 

  3. Miyazato S, Kishimoto Y, Takahashi K, Kaminogawa S, Hosono A (2016) Continuous intake of resistant maltodextrin enhanced intestinal immune response through changes in the intestinal environment in mice. Biosci Microbiota Food Health 35(1):1–7. https://doi.org/10.12938/bmfh.2015-009

    CAS  Article  PubMed  Google Scholar 

  4. Wang S, Zhang S, Huang S, Wu Z, Pang J, Wu Y, Wang J, Han D (2020) Resistant maltodextrin alleviates dextran sulfate sodium-induced intestinal inflammatory injury by increasing butyric acid to inhibit proinflammatory cytokine levels. Biomed Res Int 2020:7694734. https://doi.org/10.1155/2020/7694734

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Fastinger ND, Karr-Lilienthal LK, Spears JK, Swanson KS, Zinn KE, Nava GM, Ohkuma K, Kanahori S, Gordon DT, Fahey GC Jr (2008) A novel resistant maltodextrin alters gastrointestinal tolerance factors, fecal characteristics, and fecal microbiota in healthy adult humans. J Am Coll Nutr 27(2):356–366. https://doi.org/10.1080/07315724.2008.10719712

    CAS  Article  PubMed  Google Scholar 

  6. CFR - Code of Federal Regulations. FDA Title 21, volume 3, part 184, subpart B, section 184.1444. Three Code of Federal Regulations. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1444. Accessed May 2021

  7. Gupta U, Verma M (2013) Placebo in clinical trials. Perspect Clin Res 4(1):49–52. https://doi.org/10.4103/2229-3485.106383

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hofman DL, van Buul VJ, Brouns FJ (2016) Nutrition, health, and regulatory aspects of digestible maltodextrins. Crit Rev Food Sci Nutr 56(12):2091–2100. https://doi.org/10.1080/10408398.2014.940415

    CAS  Article  PubMed  Google Scholar 

  9. Megan Truman, Raremark Community Manager. What is a placebo and why are they used in clinical trials? (2021). Accessed 15 Apr 2021

  10. Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62(1):204–229. https://doi.org/10.1128/MMBR.62.1.204-229.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Salvini F, Riva E, Salvatici E, Boehm G, Jelinek J, Banderali G, Giovannini M (2011) A specific prebiotic mixture added to starting infant formula has long-lasting bifidogenic effects. J Nutr 141(7):1335–1339. https://doi.org/10.3945/jn.110.136747

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8):1112–1121. https://doi.org/10.1136/gutjnl-2012-303304

    CAS  Article  PubMed  Google Scholar 

  13. Corsello G, Carta M, Marinello R, Picca M, De Marco G, Micillo M, Ferrara D, Vigneri P, Cecere G, Ferri P, Roggero P, Bedogni G, Mosca F, Paparo L, Nocerino R, Berni Canani R (2017) Preventive effect of cow’s milk fermented with Lactobacillus paracasei CBA L74 on common infectious diseases in children: a multicenter randomized controlled trial. Nutrients. https://doi.org/10.3390/nu9070669

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pedret A, Valls RM, Calderon-Perez L, Llaurado E, Companys J, Pla-Paga L, Moragas A, Martin-Lujan F, Ortega Y, Giralt M, Caimari A, Chenoll E, Genoves S, Martorell P, Codoner FM, Ramon D, Arola L, Sola R (2019) Effects of daily consumption of the probiotic Bifidobacterium animalis subsp lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial. Int J Obes (Lond) 43(9):1863–1868. https://doi.org/10.1038/s41366-018-0220-0

    CAS  Article  Google Scholar 

  15. Moreno-Perez D, Bressa C, Bailen M, Hamed-Bousdar S, Naclerio F, Carmona M, Perez M, Gonzalez-Soltero R, Montalvo-Lominchar MG, Carabana C, Larrosa M (2018) Effect of a protein supplement on the gut microbiota of endurance athletes: A randomized, controlled, double-blind pilot study. Nutrients. https://doi.org/10.3390/nu10030337

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eid N, Osmanova H, Natchez C, Walton G, Costabile A, Gibson G, Rowland I, Spencer JP (2015) Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study. Br J Nutr 114(8):1226–1236. https://doi.org/10.1017/S0007114515002780

    CAS  Article  PubMed  Google Scholar 

  17. Rowan NJ, Anderson JG (1997) Maltodextrin stimulates growth of Bacillus cereus and synthesis of diarrheal enterotoxin in infant milk formulae. Appl Environ Microbiol 63(3):1182–1184. https://doi.org/10.1128/aem.63.3.1182-1184.1997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Singh P, Sanchez-Fernandez LL, Ramiro-Cortijo D, Ochoa-Allemant P, Perides G, Liu Y, Medina-Morales E, Yakah W, Freedman SD, Martin CR (2020) Maltodextrin-induced intestinal injury in a neonatal mouse model. Dis Model Mech. https://doi.org/10.1242/dmm.044776

    Article  PubMed  PubMed Central  Google Scholar 

  19. Laudisi F, Di Fusco D, Dinallo V, Stolfi C, Di Grazia A, Marafini I, Colantoni A, Ortenzi A, Alteri C, Guerrieri F, Mavilio M, Ceccherini-Silberstein F, Federici M, MacDonald TT, Monteleone I, Monteleone G (2019) The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell Mol Gastroenterol Hepatol 7(2):457–473. https://doi.org/10.1016/j.jcmgh.2018.09.002

    Article  PubMed  Google Scholar 

  20. Nickerson KP, Homer CR, Kessler SP, Dixon LJ, Kabi A, Gordon IO, Johnson EE, de la Motte CA, McDonald C (2014) The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice. PLoS ONE 9(7):e101789. https://doi.org/10.1371/journal.pone.0101789

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Reprint–preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 89(9):873–880

    Article  Google Scholar 

  22. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. Faseb J 22(2):338–342. https://doi.org/10.1096/fj.07-9492LSF

    CAS  Article  PubMed  Google Scholar 

  23. Deering KE, Devine A, O’Sullivan TA, Lo J, Boyce MC, Christophersen CT (2019) Characterizing the composition of the pediatric gut microbiome: a systematic review. Nutrients. https://doi.org/10.3390/nu12010016

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS (2015) Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res 142(1):23–32. https://doi.org/10.4103/0971-5916.162091

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Basson A, Gomez-Nguyen A, LaSalla A, Butto L, Kulpins D, Warner A, DiMartino L, Ponzani G, Osme A, Rodriguez-Palacios A (2021) Replacing animal protein with soy-pea protein in an ‘American diet’ controls Murine Crohn’s disease-like Ileitis regardless of Firmicutes: bacteroidetes ratio. J Nutr. https://doi.org/10.1093/jn/nxaa386

    Article  Google Scholar 

  26. Rodriguez-Palacios A, Mo KQ, Shah BU, Msuya J, Bijedic N, Deshpande A, Ilic S (2020) Global and historical distribution of clostridioides difficile in the human diet (1981–2019): systematic review and meta-analysis of 21886 samples reveal sources of heterogeneity, high-risk foods, and unexpected higher prevalence toward the tropic. Front Med (Lausanne) 7:9. https://doi.org/10.3389/fmed.2020.00009

    Article  Google Scholar 

  27. Nicolucci AC, Hume MP, Martinez I, Mayengbam S, Walter J, Reimer RA (2017) Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153(3):711–722. https://doi.org/10.1053/j.gastro.2017.05.055

    Article  PubMed  Google Scholar 

  28. Fernandes R, Beserra BT, Mocellin MC, Kuntz MG, da Rosa JS, de Miranda RC, Schreiber CS, Frode TS, Nunes EA, Trindade EB (2016) Effects of prebiotic and synbiotic supplementation on inflammatory markers and anthropometric indices after Roux-en-Y gastric bypass: a randomized, triple-blind, placebo-controlled pilot study. J Clin Gastroenterol 50(3):208–217. https://doi.org/10.1097/MCG.0000000000000328

    CAS  Article  PubMed  Google Scholar 

  29. van der Beek CM, Canfora EE, Kip AM, Gorissen SHM, Olde Damink SWM, van Eijk HM, Holst JJ, Blaak EE, Dejong CHC, Lenaerts K (2018) The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 87:25–35. https://doi.org/10.1016/j.metabol.2018.06.009

    CAS  Article  PubMed  Google Scholar 

  30. Theou O, Jayanama K, Fernandez-Garrido J, Buigues C, Pruimboom L, Hoogland AJ, Navarro-Martinez R, Rockwood K, Cauli O (2019) Can a prebiotic formulation reduce frailty levels in older people? J Frailty Aging 8(1):48–52. https://doi.org/10.14283/jfa.2018.39

    CAS  Article  PubMed  Google Scholar 

  31. Neto JV, De Melo CM, Riberiro SM (2013) Effects of three-month intake of synbiotic on inflammation and body composition in the elderly: a pilot study. Nutrients 4(4):1276–1286

    Article  Google Scholar 

  32. Pedersen C, Gallagher E, Horton F, Ellis RJ, Ijaz UZ, Wu H, Jaiyeola E, Diribe O, Duparc T, Cani PD, Gibson GR, Hinton P, Wright J, La Ragione R, Robertson MD (2016) Host-microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. Br J Nutr 116(11):1869–1877. https://doi.org/10.1017/S0007114516004086

    CAS  Article  PubMed  Google Scholar 

  33. Rosli D, Shahar S, Manaf ZA, Lau HJ, Yusof NYM, Haron MR, Majid HA (2021) Randomized controlled trial on the effect of partially hydrolyzed guar gum supplementation on Diarrhea frequency and gut microbiome count among pelvic radiation patients. JPEN J Parenter Enteral Nutr 45(2):277–286. https://doi.org/10.1002/jpen.1987

    CAS  Article  PubMed  Google Scholar 

  34. Sloan TJ, Jalanka J, Major GAD, Krishnasamy S, Pritchard S, Abdelrazig S, Korpela K, Singh G, Mulvenna C, Hoad CL, Marciani L, Barrett DA, Lomer MCE, de Vos WM, Gowland PA, Spiller RC (2018) A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS ONE 13(7):e0201410. https://doi.org/10.1371/journal.pone.0201410

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Azpiroz F, Molne L, Mendez S, Nieto A, Manichanh C, Mego M, Accarino A, Santos J, Sailer M, Theis S, Guarner F (2017) Effect of chicory-derived inulin on abdominal sensations and bowel motor function. J Clin Gastroenterol 51(7):619–625. https://doi.org/10.1097/MCG.0000000000000723

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Shulman RJ, Hollister EB, Cain K, Czyzewski DI, Self MM, Weidler EM, Devaraj S, Luna RA, Versalovic J, Heitkemper M (2017) Psyllium fiber reduces abdominal pain in children with irritable bowel syndrome in a randomized, double-blind trial. Clin Gastroenterol Hepatol 15(5):712–719. https://doi.org/10.1016/j.cgh.2016.03.045

    CAS  Article  PubMed  Google Scholar 

  37. Abellan Ruiz MS, Barnuevo Espinosa MD, Contreras Fernandez CJ, Luque Rubia AJ, Sanchez Ayllon F, Aldeguer Garcia M, Garcia Santamaria C, Lopez Roman FJ (2016) Digestion-resistant maltodextrin effects on colonic transit time and stool weight: a randomized controlled clinical study. Eur J Nutr 55(8):2389–2397. https://doi.org/10.1007/s00394-015-1045-4

    CAS  Article  PubMed  Google Scholar 

  38. Maldonado-Lobon JA, Diaz-Lopez MA, Carputo R, Duarte P, Diaz-Ropero MP, Valero AD, Sanudo A, Sempere L, Ruiz-Lopez MD, Banuelos O, Fonolla J, Olivares Martin M (2015) Lactobacillus fermentum CECT 5716 reduces staphylococcus load in the breastmilk of lactating mothers suffering breast pain: a randomized controlled trial. Breastfeed Med 10(9):425–432. https://doi.org/10.1089/bfm.2015.0070

    Article  PubMed  Google Scholar 

  39. Kolida S, Meyer D, Gibson GR (2007) A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur J Clin Nutr 61(10):1189–1195. https://doi.org/10.1038/sj.ejcn.1602636

    CAS  Article  PubMed  Google Scholar 

  40. Bazzocchi G, Giovannini T, Giussani C, Brigidi P, Turroni S (2014) Effect of a new synbiotic supplement on symptoms, stool consistency, intestinal transit time and gut microbiota in patients with severe functional constipation: a pilot randomized double-blind, controlled trial. Tech Coloproctol 18(10):945–953. https://doi.org/10.1007/s10151-014-1201-5

    CAS  Article  PubMed  Google Scholar 

  41. Drabinska N, Jarocka-Cyrta E, Markiewicz LH, Krupa-Kozak U (2018) The effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: results of a randomized, placebo-controlled trial. Nutrients. https://doi.org/10.3390/nu10020201

    Article  PubMed  PubMed Central  Google Scholar 

  42. Istas G, Wood E, Le Sayec M, Rawlings C, Yoon J, Dandavate V, Cera D, Rampelli S, Costabile A, Fromentin E, Rodriguez-Mateos A (2019) Effects of aronia berry (poly)phenols on vascular function and gut microbiota: a double-blind randomized controlled trial in adult men. Am J Clin Nutr 110(2):316–329. https://doi.org/10.1093/ajcn/nqz075

    Article  PubMed  Google Scholar 

  43. Linetzky Waitzberg D, Alves Pereira CC, Logullo L, Manzoni Jacintho T, Almeida D, Teixeira da Silva ML, de Miranda M, Torrinhas RS (2012) Microbiota benefits after inulin and partially hydrolized guar gum supplementation: a randomized clinical trial in constipated women. Nutr Hosp 27(1):123–129. https://doi.org/10.1590/S0212-16112012000100014

    CAS  Article  PubMed  Google Scholar 

  44. Costabile A, Kolida S, Klinder A, Gietl E, Bauerlein M, Frohberg C, Landschutze V, Gibson GR (2010) A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr 104(7):1007–1017. https://doi.org/10.1017/S0007114510001571

    CAS  Article  PubMed  Google Scholar 

  45. Lohner S, Jakobik V, Mihalyi K, Soldi S, Vasileiadis S, Theis S, Sailer M, Sieland C, Berenyi K, Boehm G, Decsi T (2018) Inulin-type fructan supplementation of 3- to 6-year-old children is associated with higher fecal bifidobacterium concentrations and fewer febrile episodes requiring medical attention. J Nutr 148(8):1300–1308. https://doi.org/10.1093/jn/nxy120

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lu QY, Rasmussen AM, Yang J, Lee RP, Huang J, Shao P, Carpenter CL, Gilbuena I, Thames G, Henning SM, Heber D, Li Z (2019) Mixed spices at culinary doses have prebiotic effects in healthy adults: a pilot study. Nutrients. https://doi.org/10.3390/nu11061425

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez-Palacios A, Harding A, Menghini P, Himmelman C, Retuerto M, Nickerson KP, Lam M, Croniger CM, McLean MH, Durum SK, Pizarro TT, Ghannoum MA, Ilic S, McDonald C, Cominelli F (2018) The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm Bowel Dis 24(5):1005–1020. https://doi.org/10.1093/ibd/izy060

    Article  PubMed  PubMed Central  Google Scholar 

  48. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. Fems Microbiol Rev 29(4):625–651. https://doi.org/10.1016/j.femsre.2004.09.003

    CAS  Article  PubMed  Google Scholar 

  49. Stojanov S, Berlec A, Strukelj B (2020) The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. https://doi.org/10.3390/microorganisms8111715

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075. https://doi.org/10.1073/pnas.0504978102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ (2006) Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 44(11):4136–4141. https://doi.org/10.1128/JCM.01004-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Amara AA, Shibl A (2015) Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm J 23(2):107–114. https://doi.org/10.1016/j.jsps.2013.07.001

    CAS  Article  PubMed  Google Scholar 

  53. Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R (2021) Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol 12:578386. https://doi.org/10.3389/fimmu.2021.578386

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Tandon D, Haque MM, Gote M, Jain M, Bhaduri A, Dubey AK, Mande SS (2019) A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Sci Rep 9(1):5473. https://doi.org/10.1038/s41598-019-41837-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. de Sant’Anna MSL, Rodrigues VC, Araujo TF, de Oliveira TT, do Peluzio MCG, de Ferreira CLLF (2015) Yacon-based product in the modulation of intestinal constipation. J Med Food 18(9):980–986. https://doi.org/10.1089/jmf.2014.0115

    CAS  Article  Google Scholar 

  56. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9

    CAS  Article  PubMed  Google Scholar 

  57. Vernia P, Marcheggiano A, Caprilli R, Frieri G, Corrao G, Valpiani D, Di Paolo MC, Paoluzi P, Torsoli A (1995) Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment Pharmacol Ther 9(3):309–313. https://doi.org/10.1111/j.1365-2036.1995.tb00386.x

    CAS  Article  PubMed  Google Scholar 

  58. Peng L, Li ZR, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139(9):1619–1625. https://doi.org/10.3945/jn.109.104638

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, Dumont F, Mancano G, Khodorova N, Andriamihaja M, Airinei G, Tome D, Benamouzig R, Davila AM, Claus SP, Sanz Y, Blachier F (2017) Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr 106(4):1005–1019. https://doi.org/10.3945/ajcn.117.158816

    CAS  Article  PubMed  Google Scholar 

  60. Ladirat SE, Schoterman MH, Rahaoui H, Mars M, Schuren FH, Gruppen H, Nauta A, Schols HA (2014) Exploring the effects of galacto-oligosaccharides on the gut microbiota of healthy adults receiving amoxicillin treatment. Br J Nutr 112(4):536–546. https://doi.org/10.1017/S0007114514001135

    CAS  Article  PubMed  Google Scholar 

  61. Majid HA, Cole J, Emery PW, Whelan K (2014) Additional oligofructose/inulin does not increase faecal bifidobacteria in critically ill patients receiving enteral nutrition: a randomised controlled trial. Clin Nutr 33(6):966–972. https://doi.org/10.1016/j.clnu.2013.11.008

    CAS  Article  PubMed  Google Scholar 

  62. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, de Vos WM, Thissen JP, Gueimonde M, de Los Reyes-Gavilan CG, Delzenne NM (2015) Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr 34(3):501–507. https://doi.org/10.1016/j.clnu.2014.06.001

    CAS  Article  PubMed  Google Scholar 

  63. Ganda Mall JP, Fart F, Sabet JA, Lindqvist CM, Nestestog R, Hegge FT, Keita AV, Brummer RJ, Schoultz I (2020) Effects of dietary fibres on acute indomethacin-induced intestinal hyperpermeability in the elderly: a randomised placebo controlled parallel clinical trial. Nutrients. https://doi.org/10.3390/nu12071954

    Article  PubMed  PubMed Central  Google Scholar 

  64. Berding K, Long-Smith CM, Carbia C, Bastiaanssen TFS, van de Wouw M, Wiley N, Strain CR, Fouhy F, Stanton C, Cryan JF, Dinan TG (2021) A specific dietary fibre supplementation improves cognitive performance-an exploratory randomised, placebo-controlled, crossover study. Psychopharmacology 238(1):149–163. https://doi.org/10.1007/s00213-020-05665-y

    CAS  Article  PubMed  Google Scholar 

  65. Clarke ST, Green-Johnson JM, Brooks SP, Ramdath DD, Bercik P, Avila C, Inglis GD, Green J, Yanke LJ, Selinger LB, Kalmokoff M (2016) beta2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: results from a double-blinded, randomised, cross-over study in healthy adults. Br J Nutr 115(10):1748–1759. https://doi.org/10.1017/S0007114516000908

    CAS  Article  PubMed  Google Scholar 

  66. Iemoli E, Trabattoni D, Parisotto S, Borgonovo L, Toscano M, Rizzardini G, Clerici M, Ricci E, Fusi A, De Vecchi E, Piconi S, Drago L (2012) Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J Clin Gastroenterol 46(Suppl):S33-40. https://doi.org/10.1097/MCG.0b013e31826a8468

    Article  PubMed  Google Scholar 

  67. Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif SK, Asghari-Jafarabadi M, Zavvari S (2014) Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30(4):430–435. https://doi.org/10.1016/j.nut.2013.09.007

    CAS  Article  PubMed  Google Scholar 

  68. Shadid R, Haarman M, Knol J, Theis W, Beermann C, Rjosk-Dendorfer D, Schendel DJ, Koletzko BV, Krauss-Etschmann S (2007) Effects of galactooligosaccharide and long-chain fructooligosaccharide supplementation during pregnancy on maternal and neonatal microbiota and immunity–a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 86(5):1426–1437. https://doi.org/10.1093/ajcn/86.5.1426

    CAS  Article  PubMed  Google Scholar 

  69. Pastor-Villaescusa B, Hurtado JA, Gil-Campos M, Uberos J, Maldonado-Lobon JA, Diaz-Ropero MP, Banuelos O, Fonolla J, Olivares M, Group P (2020) Effects of Lactobacillus fermentum CECT5716 Lc40 on infant growth and health: a randomised clinical trial in nursing women. Benef Microbes 11(3):235–244. https://doi.org/10.3920/BM2019.0180

    CAS  Article  PubMed  Google Scholar 

  70. Nickerson KP, Chanin R, McDonald C (2015) Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin. Gut Microbes 6(1):78–83. https://doi.org/10.1080/19490976.2015.1005477

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stowe SP, Redmond SR, Stormont JM, Shah AN, Chessin LN, Segal HL, Chey WY (1990) An epidemiologic study of inflammatory bowel disease in Rochester, New York Hospital incidence. Gastroenterol 98:104–110

    CAS  Article  Google Scholar 

  72. Wanders AJ, van den Borne JJ, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, Mars M, Schols HA, Feskens EJ (2011) Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 12(9):724–739. https://doi.org/10.1111/j.1467-789X.2011.00895.x

    CAS  Article  PubMed  Google Scholar 

  73. Pasman W, Wils D, Saniez MH, Kardinaal A (2006) Long-term gastrointestinal tolerance of NUTRIOSE FB in healthy men. Eur J Clin Nutr 60(8):1024–1034. https://doi.org/10.1038/sj.ejcn.1602418

    CAS  Article  PubMed  Google Scholar 

  74. Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759. https://doi.org/10.3945/ajcn.2009.27465

    CAS  Article  PubMed  Google Scholar 

  75. Sathitkowitchai W, Suratannon N, Keawsompong S, Weerapakorn W, Patumcharoenpol P, Nitisinprasert S, Nakphaichit M (2021) A randomized trial to evaluate the impact of copra meal hydrolysate on gastrointestinal symptoms and gut microbiome. PeerJ 9:e12158. https://doi.org/10.7717/peerj.12158

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ma T, Jin H, Kwok LY, Sun Z, Liong MT, Zhang H (2021) Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiol Stress 14:100294. https://doi.org/10.1016/j.ynstr.2021.100294

    Article  PubMed  PubMed Central  Google Scholar 

  77. Calgaro M, Pandolfo M, Salvetti E, Marotta A, Larini I, Pane M, Amoruso A, Del Casale A, Vitulo N, Fiorio M, Felis GE (2021) Metabarcoding analysis of gut microbiota of healthy individuals reveals impact of probiotic and maltodextrin consumption. Benef Microbes 12(2):121–136. https://doi.org/10.3920/BM2020.0137

    CAS  Article  PubMed  Google Scholar 

  78. Watson D, O’Connell Motherway M, Schoterman MH, van Neerven RJ, Nauta A, van Sinderen D (2013) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114(4):1132–1146. https://doi.org/10.1111/jam.12105

    CAS  Article  PubMed  Google Scholar 

  79. Padilha M, Brejnrod A, Danneskiold-Samsoe NB, Hoffmann C, de Melo IJ, Cabral VP, Xavier-Santos D, Taddei CR, Kristiansen K, Saad SMI (2020) Response of the human milk microbiota to a maternal prebiotic intervention is individual and influenced by maternal age. Nutrients. https://doi.org/10.3390/nu12041081

    Article  PubMed  PubMed Central  Google Scholar 

  80. An R, Wilms E, Smolinska A, Hermes GDA, Masclee AAM, de Vos P, Schols HA, van Schooten FJ, Smidt H, Jonkers D, Zoetendal EG, Troost FJ (2019) Sugar beet pectin supplementation did not alter profiles of fecal microbiota and exhaled breath in healthy young adults and healthy elderly. Nutrients. https://doi.org/10.3390/nu11092193

    Article  PubMed  PubMed Central  Google Scholar 

  81. Haghighat N, Mohammadshahi M, Shayanpour S, Haghighizadeh MH (2019) Effect of synbiotic and probiotic supplementation on serum levels of endothelial cell adhesion molecules in hemodialysis patients: a randomized control study. Probiotics Antimicrob Proteins 11(4):1210–1218. https://doi.org/10.1007/s12602-018-9477-9

    CAS  Article  PubMed  Google Scholar 

  82. Khalili L, Alipour B, Asghari Jafar-Abadi M, Faraji I, Hassanalilou T, Mesgari Abbasi M, Vaghef-Mehrabany E, Alizadeh Sani M (2019) The effects of lactobacillus casei on glycemic response, serum sirtuin1 and fetuin-a levels in patients with type 2 diabetes mellitus: a randomized controlled trial. Iran Biomed J 23(1):68–77

    Article  Google Scholar 

  83. Polakowski CB, Kato M, Preti VB, Schieferdecker MEM, Ligocki Campos AC (2019) Impact of the preoperative use of synbiotics in colorectal cancer patients: a prospective, randomized, double-blind, placebo-controlled study. Nutrition 58:40–46. https://doi.org/10.1016/j.nut.2018.06.004

    CAS  Article  PubMed  Google Scholar 

  84. Ramos CI, Armani RG, Canziani MEF, Dalboni MA, Dolenga CJR, Nakao LS, Campbell KL, Cuppari L (2019) Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: a randomized controlled trial. Nephrol Dial Transplant 34(11):1876–1884. https://doi.org/10.1093/ndt/gfy171

    CAS  Article  PubMed  Google Scholar 

  85. Soldi S, Vasileiadis S, Lohner S, Uggeri F, Puglisi E, Molinari P, Donner E, Sieland C, Decsi T, Sailer M, Theis S (2019) Prebiotic supplementation over a cold season and during antibiotic treatment specifically modulates the gut microbiota composition of 3–6 year-old children. Benef Microbes 10(3):253–263. https://doi.org/10.3920/BM2018.0116

    CAS  Article  PubMed  Google Scholar 

  86. Burns AM, Solch RJ, Dennis-Wall JC, Ukhanova M, Nieves C Jr, Mai V, Christman MC, Gordon DT, Langkamp-Henken B (2018) In healthy adults, resistant maltodextrin produces a greater change in fecal bifidobacteria counts and increases stool wet weight: a double-blind, randomized, controlled crossover study. Nutr Res 60:33–42. https://doi.org/10.1016/j.nutres.2018.09.007

    CAS  Article  PubMed  Google Scholar 

  87. Lages PC, Generoso SV, Correia M (2018) Postoperative symbiotic in patients with head and neck cancer: a double-blind randomised trial. Br J Nutr 119(2):190–195. https://doi.org/10.1017/S0007114517003403

    CAS  Article  PubMed  Google Scholar 

  88. Canfora EE, van der Beek CM, Hermes GDA, Goossens GH, Jocken JWE, Holst JJ, van Eijk HM, Venema K, Smidt H, Zoetendal EG, Dejong CHC, Lenaerts K, Blaak EE (2017) Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 153(1):87–97. https://doi.org/10.1053/j.gastro.2017.03.051

    CAS  Article  PubMed  Google Scholar 

  89. Hustoft TN, Hausken T, Ystad SO, Valeur J, Brokstad K, Hatlebakk JG, Lied GA (2017) Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol Motil. https://doi.org/10.1111/nmo.12969

    Article  PubMed  Google Scholar 

  90. Buigues C, Fernandez-Garrido J, Pruimboom L, Hoogland AJ, Navarro-Martinez R, Martinez-Martinez M, Verdejo Y, Mascaros MC, Peris C, Cauli O (2016) Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci. https://doi.org/10.3390/ijms17060932

    Article  PubMed  PubMed Central  Google Scholar 

  91. Scarpellini E, Deloose E, Vos R, Francois IE, Delcour JA, Broekaert WF, Verbeke K, Tack J (2016) The effect of arabinoxylooligosaccharides on gastric sensory-motor function and nutrient tolerance in man. Neurogastroenterol Motil 28(8):1194–1203. https://doi.org/10.1111/nmo.12819

    CAS  Article  PubMed  Google Scholar 

  92. Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, Gibson GR (2015) Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr 114(4):586–595. https://doi.org/10.1017/S0007114515001889

    CAS  Article  PubMed  Google Scholar 

  93. Windey K, De Preter V, Huys G, Broekaert WF, Delcour JA, Louat T, Herman J, Verbeke K (2015) Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects. Br J Nutr 113(2):225–238. https://doi.org/10.1017/S0007114514003523

    CAS  Article  PubMed  Google Scholar 

  94. Childs CE, Roytio H, Alhoniemi E, Fekete AA, Forssten SD, Hudjec N, Lim YN, Steger CJ, Yaqoob P, Tuohy KM, Rastall RA, Ouwehand AC, Gibson GR (2014) Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr 111(11):1945–1956. https://doi.org/10.1017/S0007114513004261

    CAS  Article  PubMed  Google Scholar 

  95. Vulevic J, Juric A, Tzortzis G, Gibson GR (2013) A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 143(3):324–331. https://doi.org/10.3945/jn.112.166132

    CAS  Article  PubMed  Google Scholar 

  96. Waitzberg DL, Logullo LC, Bittencourt AF, Torrinhas RS, Shiroma GM, Paulino NP, Teixeira-da-Silva ML (2013) Effect of synbiotic in constipated adult women - a randomized, double-blind, placebo-controlled study of clinical response. Clin Nutr 32(1):27–33. https://doi.org/10.1016/j.clnu.2012.08.010

    Article  PubMed  Google Scholar 

  97. Westerbeek EA, Slump RA, Lafeber HN, Knol J, Georgi G, Fetter WP, van Elburg RM (2013) The effect of enteral supplementation of specific neutral and acidic oligosaccharides on the faecal microbiota and intestinal microenvironment in preterm infants. Eur J Clin Microbiol Infect Dis 32(2):269–276. https://doi.org/10.1007/s10096-012-1739-y

    CAS  Article  PubMed  Google Scholar 

  98. Lecerf JM, Depeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, Cayzeele A, Abdelnour G, Jaruga A, Younes H, Jacobs H, Lambrey G, Abdelnour AM, Pouillart PR (2012) Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr 108(10):1847–1858. https://doi.org/10.1017/S0007114511007252

    CAS  Article  PubMed  Google Scholar 

  99. Schouten B, Van Esch BC, Kormelink TG, Moro GE, Arslanoglu S, Boehm G, Knippels LM, Redegeld FA, Willemsen LE, Garssen J (2011) Non-digestible oligosaccharides reduce immunoglobulin free light-chain concentrations in infants at risk for allergy. Pediatr Allergy Immunol 22(5):537–542. https://doi.org/10.1111/j.1399-3038.2010.01132.x

    Article  PubMed  Google Scholar 

  100. Chen O, Sudakaran S, Blonquist T, Mah E, Durkee S, Bellamine A (2021) Effect of arabinogalactan on the gut microbiome: a randomized, double-blind, placebo-controlled, crossover trial in healthy adults. Nutrition 90:111273. https://doi.org/10.1016/j.nut.2021.111273

    CAS  Article  PubMed  Google Scholar 

  101. Lee MC, Jhang WL, Lee CC, Kan NW, Hsu YJ, Ho CS, Chang CH, Cheng YC, Lin JS, Huang CC (2021) The effect of kefir supplementation on improving human endurance exercise performance and antifatigue. Metabolites. https://doi.org/10.3390/metabo11030136

    Article  PubMed  PubMed Central  Google Scholar 

  102. Leyrolle Q, Cserjesi R, Maria DGHM, Zamariola G, Hiel S, Gianfrancesco MA, Portheault D, Amadieu C, Bindels LB, Leclercq S, Rodriguez J, Neyrinck AM, Cani PD, Lanthier N, Trefois P, Bindelle J, Paquot N, Cnop M, Thissen JP, Klein O, Luminet O, Delzenne NM (2021) Prebiotic effect on mood in obese patients is determined by the initial gut microbiota composition: A randomized, controlled trial. Brain Behav Immun 94:289–298. https://doi.org/10.1016/j.bbi.2021.01.014

    CAS  Article  PubMed  Google Scholar 

  103. Benitez-Paez A, Hess AL, Krautbauer S, Liebisch G, Christensen L, Hjorth MF, Larsen TM, Sanz Y, MyNewgGt C (2021) Sex, food, and the gut microbiota: disparate response to caloric restriction diet with fiber supplementation in women and men. Mol Nutr Food Res 65(8):e2000996. https://doi.org/10.1002/mnfr.202000996

    CAS  Article  PubMed  Google Scholar 

  104. Neyrinck AM, Rodriguez J, Zhang Z, Seethaler B, Mailleux F, Vercammen J, Bindels LB, Cani PD, Nazare JA, Maquet V, Laville M, Bischoff SC, Walter J, Delzenne NM (2021) Noninvasive monitoring of fibre fermentation in healthy volunteers by analyzing breath volatile metabolites: lessons from the FiberTAG intervention study. Gut Microbes 13(1):1–16. https://doi.org/10.1080/19490976.2020.1862028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Tang B, Tang L, Huang C, Tian C, Chen L, He Z, Yang G, Zuo L, Zhao G, Liu E, Wang S, Lin H, He J, Yang S (2021) The effect of probiotics supplementation on gut microbiota after Helicobacter pylori eradication: a multicenter randomized controlled trial. Infect Dis Ther 10(1):317–333. https://doi.org/10.1007/s40121-020-00372-9

    Article  PubMed  Google Scholar 

Download references

Funding

Research was supported by the NIH grant DK055812, DK091222 and DK097948 (to FC), F32DK117585 and K01DK127008-01 (to AB), and P01DK091222 Germ-free and Gut Microbiome Core and R21DK118373 (to ARP).

Author information

Authors and Affiliations

Authors

Contributions

AR-P, ARB: Conceptualization; ARB, RA: Literature search and data analysis; RA, ARB, AR-P: Writing- original draft preparation; AR-P, ARB, PW, FC: Writing—review and editing; AR-P, ARB, FC: Funding acquisition; AR-P, FC, PW: Resources; AR-P, ARB, PW: Supervision.

Corresponding author

Correspondence to Alexander Rodriguez-Palacios.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almutairi, R., Basson, A.R., Wearsh, P. et al. Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. Eur J Nutr (2022). https://doi.org/10.1007/s00394-022-02802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00394-022-02802-5

Keywords

  • Gut microbiome
  • Firmicutes:Bacteroidetes ratio
  • Food additive
  • Experimental design