Skip to main content

The effect of oral iron supplementation on the gut microbiota, gut inflammation, and iron status in iron-depleted South African school-age children with virally suppressed HIV and without HIV

Abstract

Purpose

Both HIV and oral iron interventions may alter gut microbiota composition and increase gut inflammation. We determined the effect of oral iron supplementation on gut microbiota composition, gut inflammation, and iron status in iron-depleted South Africa school-aged children living with HIV (HIV+) but virally suppressed on antiretroviral therapy and children without HIV (HIV-ve).

Methods

In this before-after intervention study with case–control comparisons, we provided 55 mg elemental iron from ferrous sulphate, once daily for 3 months, to 33 virally suppressed (< 50 HIV RNA copies/mL) HIV+ and 31 HIV-ve children. At baseline and endpoint, we assessed microbial composition of faecal samples (16S rRNA sequencing), and markers of gut inflammation (faecal calprotectin), anaemia (haemoglobin) and iron status (plasma ferritin, soluble transferrin receptor). This study was nested within a larger trial registered at clinicaltrials.gov as NCT03572010.

Results

HIV+ (11.3y SD ± 1.8, 46% male) and HIV−ve (11.1y SD ± 1.7, 52% male) groups did not significantly differ in age or sex ratio. Following iron supplementation, improvements were observed in haemoglobin (HIV+ : 118 to 124 g/L, P = 0.003; HIV−ve: 120 to 124 g/L, P = 0.003), plasma ferritin (HIV+ : 15 to 34 µg/L, P < 0.001; HIV−ve: 18 to 37 µg/L, P < 0.001), and soluble transferrin receptor (HIV+ : 7.1 to 5.9 mg/L, P < 0.001; HIV−ve: 6.6 to 5.7 mg/L, P < 0.001), with no significant change in the relative abundance of any genera, alpha diversity of the gut microbiota (HIV+ : P = 0.37; HIV−ve: P = 0.77), or faecal calprotectin (HIV+ : P = 0.42; HIV−ve: P = 0.80).

Conclusion

Our findings suggest that oral iron supplementation can significantly improve haemoglobin and iron status without increasing pathogenic gut microbial taxa or gut inflammation in iron-depleted virally suppressed HIV+ and HIV−ve school-age children.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and material

The data presented in this study are available on request from the corresponding author.

References

  1. Joint United Nations Programme on HIV/AIDS (2020) UNAIDS data 2020. https://www.unaids.org/en/resources/documents/2020/unaids-data. Geneva: UNAIDS. Accessed 10 Sep 2021

  2. Kassebaum NJ (2016) The global burden of anemia. Hematol Oncol Clin North Am 30:247–308. https://doi.org/10.1016/j.hoc.2015.11.002

    Article  PubMed  Google Scholar 

  3. Balarajan Y, Ramakrishnan U, Özaltin E et al (2011) Anaemia in low-income and middle-income countries. Lancet 378:2123–2135. https://doi.org/10.1016/S0140-6736(10)62304-5

    Article  PubMed  Google Scholar 

  4. Armitage AE, Moretti D (2019) The importance of iron status for young children in low- and middle-income countries: a narrative review. Pharmaceuticals 12:e59. https://doi.org/10.3390/ph12020059

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organization (2017) Nutritional anaemias: Tools for effective prevention and control. https://www.who.int/nutrition/publications/micronutrients/anaemias-tools-prevention-control/en/. Geneva: WHO. Accessed 10 Sep 2021

  6. Abioye AI, Andersen CT, Sudfeld CR, Fawzi WW (2020) Anemia, iron status, and HIV: a systematic review of the evidence. Adv Nutr 11:1334–1363. https://doi.org/10.1093/advances/nmaa037

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jaeggi T, Kortman GAM, Moretti D et al (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64:731–742. https://doi.org/10.1136/gutjnl-2014-307720

    Article  CAS  PubMed  Google Scholar 

  8. Zimmermann MB, Chassard C, Rohner F et al (2010) The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Côte d’Ivoire. Am J Clin Nutr 92:1406–1415. https://doi.org/10.3945/ajcn.110.004564.1

    Article  CAS  PubMed  Google Scholar 

  9. Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S-S1467. https://doi.org/10.3945/ajcn.2010.28674F

    Article  CAS  PubMed  Google Scholar 

  10. Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H (2014) Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 38:1202–1234. https://doi.org/10.1111/1574-6976.12086

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg ED (1997) The lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583. https://doi.org/10.1353/pbm.1997.0072

    Article  CAS  PubMed  Google Scholar 

  12. Redig AJ, Berliner N (2013) Pathogenesis and clinical implications of HIV-related anemia in 2013. Hematol Am Soc Hematol Educ Progr. https://doi.org/10.1182/asheducation-2013.1.377

    Article  Google Scholar 

  13. Klatt NR, Funderburg NT, Brenchley JM (2013) Microbial translocation, immune activation, and HIV disease. Trends Microbiol 21:6–13. https://doi.org/10.1016/j.tim.2012.09.001

  14. Dinh DM, Volpe GE, Duffalo C et al (2015) Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis 211:19–27. https://doi.org/10.1093/infdis/jiu409

    Article  CAS  PubMed  Google Scholar 

  15. Sandler NG, Douek DC (2012) Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol 10:655–666. https://doi.org/10.1038/nrmicro2848

    Article  CAS  PubMed  Google Scholar 

  16. Ganz T (2019) Anemia of inflammation. N Engl J Med 381:1148–1157. https://doi.org/10.1056/NEJMra1804281

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Ou Z, Tang X et al (2018) Alterations in the gut microbiota of patients with acquired immune deficiency syndrome. J Cell Mol Med 22:2263–2271. https://doi.org/10.1111/jcmm.13508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cook RR, Fulcher JA, Tobin NH et al (2019) Effects of HIV viremia on the gastrointestinal microbiome of young MSM. AIDS 33:793–804. https://doi.org/10.1097/QAD.0000000000002132

    Article  CAS  PubMed  Google Scholar 

  19. Pinto-Cardoso S, Klatt NR, Reyes-Terán G (2018) Impact of antiretroviral drugs on the microbiome: unknown answers to important questions. Curr Opin HIV AIDS 13:53–60. https://doi.org/10.1097/COH.0000000000000428

    Article  CAS  PubMed  Google Scholar 

  20. Lozupone CA, Li M, Campbell TB et al (2013) Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14:329–339. https://doi.org/10.1016/j.chom.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  21. Crakes KR, Jiang G (2019) Gut microbiome alterations during HIV/SIV infection: implications for HIV cure. Front Microbiol 10:e1104. https://doi.org/10.3389/fmicb.2019.01104

    Article  Google Scholar 

  22. Hofer U, Speck RF (2009) Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection. Semin Immunopathol 31:257–266. https://doi.org/10.1007/s00281-009-0158-3

    Article  CAS  PubMed  Google Scholar 

  23. Goosen C, Baumgartner J, Mikulic N et al (2021) Examining associations of HIV and iron status with nutritional and inflammatory status, anemia and dietary intake in South African schoolchildren. Nutrients 13:e962. https://doi.org/10.3390/nu13030962

    Article  CAS  Google Scholar 

  24. De Onis M, Onyango AW, Borghi E et al (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667. https://doi.org/10.2471/blt.07.043497

    Article  PubMed  PubMed Central  Google Scholar 

  25. World Health Organization (2008) Training course on child growth assessment. https://www.who.int/childgrowth/training/module_h_directors_guide.pdf. Geneva: WHO. Accessed 10 Sep 2021

  26. Goosen C, Blaauw R (2021) The development of a quantified food frequency questionnaire for assessing iron nutrition in schoolchildren from resource-limited settings in Cape Town, South Africa. Ecol Food Nutr. https://doi.org/10.1080/03670244.2021.1881896

    Article  PubMed  Google Scholar 

  27. South African Food Data System (SAFOODS). Food Composition Database, v. 2019; Cape Town: SAMRC

  28. Erhardt JG, Estes JE, Pfeiffer CM et al (2004) Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J Nutr 134:3127–3132. https://doi.org/10.1093/jn/134.11.3127

    Article  CAS  PubMed  Google Scholar 

  29. Namaste SML, Ou J, Williams AM et al (2020) Adjusting iron and vitamin A status in settings of inflammation: a sensitivity analysis of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) approach. Am J Clin Nutr 112:458S-467S. https://doi.org/10.1093/ajcn/nqaa141

    Article  PubMed Central  Google Scholar 

  30. World Health Organization (2020) WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. Geneva: WHO. https://www.who.int/publications/i/item/9789240000124. Accessed 10 Sept 2021

  31. Bjarnason I (2017) The use of fecal calprotectin in inflammatory bowel disease. Gastroenterol Hepatol 13:53–56

    Google Scholar 

  32. Tito RY, Cypers H, Joossens M et al (2017) Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol 69:114–121. https://doi.org/10.1002/art.39802

    Article  CAS  PubMed  Google Scholar 

  33. Tito RY, Chaffron S, Caenepeel C et al (2019) Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut 68:1180–1189. https://doi.org/10.1136/gutjnl-2018-316106

    Article  CAS  PubMed  Google Scholar 

  34. Hildebrand F, Tito RY, Voigt AY et al (2014) LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome 2:30. https://doi.org/10.1186/2049-2618-2-37

    Article  PubMed  PubMed Central  Google Scholar 

  35. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Falony G, Joossens M, Vieira-silva S et al (2016) Population-level analysis of gut microbiome variation. Science 352:560–564. https://doi.org/10.1126/science.aad3503

    Article  CAS  PubMed  Google Scholar 

  37. Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE 7:e30126. https://doi.org/10.1371/journal.pone.0030126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fernandes AD, Reid JNS, Macklaim JM et al (2014) Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2:15. https://doi.org/10.1186/2049-2618-2-15

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sangkhae V, Nemeth E (2017) Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 8:126–136. https://doi.org/10.3945/an.116.013961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shet A, Bhavani PK, Kumarasamy N et al (2015) Anemia, diet and therapeutic iron among children living with HIV: a prospective cohort study. BMC Pediatr 15:e164. https://doi.org/10.1186/s12887-015-0484-7

    Article  CAS  Google Scholar 

  41. Esan MO, Van Hensbroek MB, Nkhoma E et al (2013) Iron supplementation in HIV-infected Malawian children with anemia: a double-blind, randomized, controlled trial. Clin Infect Dis 57:1626–1634. https://doi.org/10.1093/cid/cit528

    Article  CAS  PubMed  Google Scholar 

  42. Beller L, Deboutte W, Falony G, Vieira-Silva S, Tito RY, Valles-Colomer M, et al. Successional stages in infant gut microbiota maturation. bioRxiv preprint. https://doi.org/10.1101/2021.06.25.450009

  43. Dostal A, Baumgartner J, Riesen N et al (2014) Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in South African children. Br J Nutr 112:547–556. https://doi.org/10.1017/S0007114514001160

    Article  CAS  PubMed  Google Scholar 

  44. Rothschild D, Weissbrod O, Barkan E et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215. https://doi.org/10.1038/nature25973

    Article  CAS  PubMed  Google Scholar 

  45. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Genet 13:260–270. https://doi.org/10.1038/nrg3182

    Article  CAS  Google Scholar 

  46. Abange WB, Martin C, Nanfack AJ et al (2021) Alteration of the gut fecal microbiome in children living with HIV on antiretroviral therapy in Yaounde. Cameroon Sci Rep 11:7666. https://doi.org/10.1038/s41598-021-87368-8

    Article  CAS  PubMed  Google Scholar 

  47. Flygel TT, Sovershaeva E, Claassen-Weitz S et al (2020) Composition of gut microbiota of children and adolescents with perinatal Human Immunodeficiency Virus infection taking antiretroviral therapy in Zimbabwe. J Infect Dis 221:483–492. https://doi.org/10.1093/infdis/jiz473

    Article  CAS  PubMed  Google Scholar 

  48. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621. https://doi.org/10.1128/CMR.00008-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vieira-Silva S, Sabino J, Valles-Colomer M et al (2019) Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat Microbiol 4:1826–1831. https://doi.org/10.1038/s41564-019-0483-9

    Article  CAS  PubMed  Google Scholar 

  50. Roberfroid M, Gibson GR, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–S63. https://doi.org/10.1017/S0007114510003363

    Article  CAS  PubMed  Google Scholar 

  51. Fukuda S, Toh H, Hase K et al (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547. https://doi.org/10.1038/nature09646

    Article  CAS  PubMed  Google Scholar 

  52. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241. https://doi.org/10.1016/j.cell.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  53. Paganini D, Uyoga MA, Cercamondi CI et al (2017) Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants. Am J Clin Nutr 106:1020–1031. https://doi.org/10.3945/ajcn.116.145060

    Article  CAS  PubMed  Google Scholar 

  54. De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107:14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bandera A, De Benedetto I, Bozzi G, Gori A (2018) Altered gut microbiome composition in HIV infection: causes, effects and potential intervention. Curr Opin HIV AIDS 13:73–80. https://doi.org/10.1097/COH.0000000000000429

    Article  CAS  PubMed  Google Scholar 

  56. Kaur US, Shet A, Rajnala N et al (2018) High Abundance of genus Prevotella in the gut of perinatally HIV-infected children is associated with IP-10 levels despite therapy. Sci Rep 8:17679. https://doi.org/10.1038/s41598-018-35877-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–109. https://doi.org/10.1126/science.1208344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paganini D, Uyoga MA, Kortman GAM et al (2017) Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut 66:1956–1967. https://doi.org/10.1136/gutjnl-2017-314418

    Article  CAS  PubMed  Google Scholar 

  59. Canani RB, Rapacciuolo L, Romano MT et al (2004) Diagnostic value of faecal calprotectin in paediatric gastroenterology clinical practice. Dig Liver Dis 36:467–470. https://doi.org/10.1016/j.dld.2004.02.009

    Article  Google Scholar 

Download references

Acknowledgements

We thank the study participants and their caregivers; the clinical, laboratory and support staff from the Family Centre for Research with Ubuntu, the Division of Human Nutrition at Stellenbosch University, and the Infectious Diseases Clinic at Tygerberg Hospital; C Brand (Stellenbosch University, South Africa), C Verspecht, L Rymenans and L De Commer (VIB and KU Leuven, Belgium), N Mikulic (ETH Zurich, Switzerland) and J Erhardt (Willstaett, Germany) for supporting sample processing and laboratory analyses; and R Laubscher (SAMRC Biostatistics Unit) for the nutrient conversions.

Funding

This research study was nested within a series of iron studies funded by the Thrasher Research Fund, USA (14199). The Raes lab is supported by KU Leuven, VIB and the Rega institute. RYT is funded by a post-doctoral fellowship from the Research Foundation Flanders (FWO-Vlaanderen, Grant Number 1234321 N). CG is supported by the L’Oréal-UNESCO for Women in Science sub-Saharan Africa Fellowship Programme, the Harry Crossley Foundation, and the Ernst and Ethel Eriksen Trust. The work reported herein was also made possible through funding by the South African Medical Research Council (SAMRC) through its Division of Research Capacity Development under the SAMRC Bongani Mayosi National Health Scholars Programme from funding received from the South African National Treasury. The content hereof is the sole responsibility of the authors and does not necessarily represent the official views of the SAMRC or the funders.

Author information

Authors and Affiliations

Authors

Contributions

CG designed the nested study, conducted the research, analysed the data (other than the microbiota data), and wrote the original draft of the paper. SP performed the microbiota analysis and visualisation. RYT processed 16S sequencing data. JB supervised the data analysis (other than the microbiota data). SLB, MFC, MBZ and JR provided study resources. RB supervised the research study and provided study resources. All authors reviewed the paper and read and approved the final manuscript.

Corresponding authors

Correspondence to Charlene Goosen or Jeroen Raes.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the health research ethics committees of ETH Zurich (EK 2018-N-40, 28 June 2018) and Stellenbosch University (M18/05/017, 17 July 2018, and S18/06/136, 27 August 2018).

Consent to participate

Written informed assent to participate in the study was obtained from all participants (children) involved in the study. Written informed consent was obtained from caregivers (parent or legal guardian).

Consent for publication

Written informed assent for the publication of study results was obtained from all participants involved in the study. Written informed consent was obtained from caregivers.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goosen, C., Proost, S., Tito, R.Y. et al. The effect of oral iron supplementation on the gut microbiota, gut inflammation, and iron status in iron-depleted South African school-age children with virally suppressed HIV and without HIV. Eur J Nutr 61, 2067–2078 (2022). https://doi.org/10.1007/s00394-021-02793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02793-9

Keywords