Skip to main content

Advertisement

Log in

Chronic diseases are first associated with the degradation and artificialization of food matrices rather than with food composition: calorie quality matters more than calorie quantity

European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

For decades, it has been customary to relate human health to the nutritional composition of foods, and from there was born food composition databases, composition labelling scores and the recommendation to eat varied foods. However, individuals can fully address their nutritional needs and become chronically ill. The nutrient balance of a food is only a small part of its overall health potential. In this paper, we discussed the proof of concept that the increased risk of chronic diseases worldwide is primarily associated with the degradation and artificialization of food matrices, rather than only their nutrient contents, based on the assumption that “food matrices govern the metabolic fate of nutrients”.

Methods

An empirico-inductive proof of concept research design has been used, based on scientific data linking the degree of food processing, food matrices and human health, notably on the glycaemic index, nutrient bioavailability, satiety potential, and synergistic effects.

Results

We postulate that if the nutrient content is insufficient to fully characterize the diet-global health relationship, one other dimensions is necessary, i.e., the food matrix through the degree of processing. Both matrix and nutrient composition dimensions have been included under the new concept of the 3V index for Real (Vrai), Vegetal (Végétal), and Varied (Varié) foods. The Real metric, reflecting the integrity of the initial food matrix, is the most important, followed by the Vegetal (nutrient origin) and the Varied (“composition” effect) metrics.

Conclusion

Concerning their effects on health, food matrix comes first, and then nutrient composition, and calorie quality matters more than calorie quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Scrinis G (2013) Nutritionism—the science and politics of dietary advice. Columbia University Press, New York

    Book  Google Scholar 

  2. Fardet A, Rock E, Bassama J, Bohuon P, Prabhasankar P, Monteiro C, Moubarac J-C, Achir N (2015) Current food classifications in epidemiological studies do not enable solid nutritional recommendations to prevent diet-related chronic diseases: the impact of food processing. Adv Nutr 6(6):629–638. https://doi.org/10.3945/an.115.008789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F (2020) Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 125(3):308–318. https://doi.org/10.1017/S0007114520002688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Askari M, Heshmati J, Shahinfar H, Tripathi N, Daneshzad E (2020) Ultra-processed food and the risk of overweight and obesity: a systematic review and meta-analysis of observational studies. Int J Obes 44(10):2080–2091. https://doi.org/10.1038/s41366-020-00650-z

    Article  Google Scholar 

  5. Fardet A (2018) Chapter 3—characterization of the degree of food processing in relation with its health potential and effects. Adv Food Nutr Res 85:79–129. https://doi.org/10.1016/bs.afnr.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  6. Fardet A, Richonnet C, Mazur A (2019) Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: a systematic review of meta-analyses. Nutr Rev 77(6):376–387. https://doi.org/10.1093/nutrit/nuz004

    Article  PubMed  Google Scholar 

  7. Fardet A (2015) A shift toward a new holistic paradigm will help to preserve and better process grain product food structure for improving their health effects. Food Funct 6(2):363–382. https://doi.org/10.1039/C4FO00477A

    Article  CAS  PubMed  Google Scholar 

  8. Fardet A, Richonnet C (2020) Nutrient density and bioaccessibility, and antioxidant, satiety, glycaemic, alkalinizing potentials of fruit-based foods according to degree of processing: a narrative review. Crit Rev Food Sci Nutr 60(19):3233–3258. https://doi.org/10.1080/10408398.2019.1682512

    Article  CAS  PubMed  Google Scholar 

  9. Fardet A, Dupont D, Rioux L-E, Turgeon SL (2019) Influence of food structure on dairy protein, lipid and calcium bioavailability: a narrative review of evidence. Crit Rev Food Sci Nutr 50(13):1987–2010. https://doi.org/10.1080/10408398.2018.1435503

    Article  CAS  Google Scholar 

  10. Fardet A, Rock E (2020) Exclusive reductionism, chronic diseases and nutritional confusion: degree of processing as a lever for improving public health. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1976101

    Article  PubMed  Google Scholar 

  11. Aguilera JM (2018) The food matrix: implications in processing, nutrition and health. Crit Rev Food Sci Nutr 59(22):3612–3629. https://doi.org/10.1080/10408398.2018.1502743

    Article  CAS  PubMed  Google Scholar 

  12. Ding EL, Malik VS (2008) Convergence of obesity and high glycemic diet on compounding diabetes and cardiovascular risks in modernizing China: an emerging public health dilemma. Global Health 4:4. https://doi.org/10.1186/1744-8603-4-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chiavaroli L, Lee D, Ahmed A, Cheung A, Khan TA, Blanco S, Mejia MA, Jenkins DJA, Livesey G, Wolever TMS, Rahelić D, Kahleová H, Salas-Salvadó J, Kendall CWC, Sievenpiper JL (2021) Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ 374:n1651. https://doi.org/10.1136/bmj.n1651

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zafar MI, Mills KE, Zheng J, Regmi A, Hu SQ, Gou LN, Chen LL (2019) Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. Am J Clin Nutr 110(4):891–902. https://doi.org/10.1093/ajcn/nqz149

    Article  PubMed  Google Scholar 

  15. Greenwood DC, Threapleton DE, Evans CEL, Cleghorn CL, Nykjaer C, Woodhead C, Burley VJ (2013) Glycemic index, glycemic load, carbohydrates, and type 2 diabetes systematic review and dose-response meta-analysis of prospective studies. Diabetes Care 36(12):4166–4171. https://doi.org/10.2337/dc13-0325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fardet A (2014) Procédés technologiques, valeurs santé des aliments et diabète de type 2. Méd Mal Métabol 8(6):608–611

    Google Scholar 

  17. Del Prato S, Leonetti F, Simonson D, Sheehan P, Matsuda M, DeFronzo R (1994) Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia. Springer, Berlin, pp 1025–1035

    Google Scholar 

  18. Delgado A, Issaoui M, Fardet A, de Carvalho IS, Vieira M (2021) Food composition databases: does it matter to human health? Nutrients 13(8):2816. https://doi.org/10.3390/nu13082816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barabási A-L, Menichetti G, Loscalzo J (2020) The unmapped chemical complexity of our diet. Nat Food 1(1):33–37. https://doi.org/10.1038/s43016-019-0005-1

    Article  CAS  Google Scholar 

  20. Chambers L (2016) Food texture and the satiety cascade. Nutr Bull 41(3):277–282. https://doi.org/10.1111/nbu.12221

    Article  Google Scholar 

  21. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72(2):R21–R32. https://doi.org/10.1111/j.1750-3841.2007.00274.x

    Article  CAS  PubMed  Google Scholar 

  22. Miquel-Kergoat S, Azais-Braesco V, Burton-Freeman B, Hetherington MM (2015) Effects of chewing on appetite, food intake and gut hormones: a systematic review and meta-analysis. Physiol Behav 151:88–96. https://doi.org/10.1016/j.physbeh.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs DR, Tapsell LC (2013) Food synergy: the key to a healthy diet. Proc Nutr Soc 72(2):200–206. https://doi.org/10.1017/s0029665112003011

    Article  PubMed  Google Scholar 

  24. Miao M, Hamaker BR (2021) Food matrix effects for modulating starch bioavailability. Annu Rev Food Sci Technol 12(1):169–191. https://doi.org/10.1146/annurev-food-070620-013937

    Article  CAS  PubMed  Google Scholar 

  25. Jayathunge K, Stratakos AC, Cregenzan-Albertia O, Grant IR, Lyng J, Koidis A (2017) Enhancing the lycopene in vitro bioaccessibility of tomato juice synergistically applying thermal and non-thermal processing technologies. Food Chem 221:698–705. https://doi.org/10.1016/j.foodchem.2016.11.117

    Article  CAS  PubMed  Google Scholar 

  26. Khattab RY, Arntfield SD (2009) Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. Lwt Food Sci Technol 42(6):1113–1118. https://doi.org/10.1016/j.lwt.2009.02.004

    Article  CAS  Google Scholar 

  27. Carciochi RA, Galván-D’Alessandro L, Vandendriessche P, Chollet S (2016) Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Hum Nutr 71(4):361–367. https://doi.org/10.1007/s11130-016-0567-0

    Article  CAS  PubMed  Google Scholar 

  28. Monteiro CA (2009) Nutrition and health. The issue is not food, nor nutrients, so much as processing. Public Health Nutr 12(5):729–731. https://doi.org/10.1017/S1368980009005291

    Article  PubMed  Google Scholar 

  29. Lane MM, Davis JA, Beattie S, Gómez-Donoso C, Loughman A, O’Neil A, Jacka F, Berk M, Page R, Marx W, Rocks T (2020) Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes Rev 22(3):e13146. https://doi.org/10.1111/obr.13146

    Article  PubMed  Google Scholar 

  30. Fardet A, Rock E (2019) Ultra-processed foods: a new holistic paradigm? Trends Food Sci Technol 93:174–184. https://doi.org/10.1016/j.tifs.2019.09.016

    Article  CAS  Google Scholar 

  31. Monteiro CA, Cannon G, Levy RB, Moubarac J-C, Louzada MLC, Rauber F, Khandpur N, Cediel G, Neri D, Martinez-Steele E, Baraldi LG, Jaime PC (2019) Ultra-processed foods: what they are and how to identify them? Public Health Nutr 22(5):936–941. https://doi.org/10.1017/S1368980018003762

    Article  PubMed  Google Scholar 

  32. Fardet A, Lebredonchel L, Rock E (2021) Empirico-inductive and/or hypothetico-deductive methods in food science and nutrition research: which one to favour for a better global health? Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1976101

    Article  PubMed  Google Scholar 

  33. He FJ, Tan M, Ma Y, MacGregor GA (2020) Salt reduction to prevent hypertension and cardiovascular disease JACC state-of-the-art review. J Am Coll Cardiol 75(6):632–647. https://doi.org/10.1016/j.jacc.2019.11.055

    Article  CAS  PubMed  Google Scholar 

  34. WHO (2015) Sugars intake for adults and children—guideline. WHO, Geneva

    Google Scholar 

  35. Ruanpeng D, Thongprayoon C, Cheungpasitpom W, Harindhanavudhi T (2017) Sugar and artificially sweetened beverages linked to obesity: a systematic review and meta-analysis. QJM 110(8):513–520. https://doi.org/10.1093/qjmed/hcx068

    Article  CAS  PubMed  Google Scholar 

  36. Huang C, Huang JF, Tian Y, Yang XL, Gu DF (2014) Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis 234(1):11–16. https://doi.org/10.1016/j.atherosclerosis.2014.01.037

    Article  CAS  PubMed  Google Scholar 

  37. Hooper L, Martin N, Abdelhamid A, Smith GD (2015) Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 10(6):CD011737. https://doi.org/10.1002/14651858.cd011737

    Article  Google Scholar 

  38. Teng AM, Jones AC, Mizdrak A, Signal L, Genç M, Wilson N (2019) Impact of sugar-sweetened beverage taxes on purchases and dietary intake: systematic review and meta-analysis. Obes Rev 20(9):1187–1204. https://doi.org/10.1111/obr.12868

    Article  PubMed  Google Scholar 

  39. Park H, Yu S (2019) Policy review: implication of tax on sugar-sweetened beverages for reducing obesity and improving heart health. Health Policy Technol 8(1):92–95. https://doi.org/10.1016/j.hlpt.2018.12.002

    Article  Google Scholar 

  40. de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978. https://doi.org/10.1136/bmj.h3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsilas CS, de Souza RJ, Mejia SB, Mirrahimi A, Cozma AI, Jayalath VH, Ha V, Tawfik R, Di Buono M, Jenkins AL, Leiter LA, Wolever TMS, Beyene J, Khan T, Kendall CWC, Jenkins DJA, Sievenpiper JL (2017) Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Can Med Assoc J 189(20):E711–E720. https://doi.org/10.1503/cmaj.160706

    Article  Google Scholar 

  42. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, Chung ST, Costa E, Courville A, Darcey V, Fletcher LA, Forde CG, Gharib AM, Guo J, Howard R, Joseph PV, McGehee S, Ouwerkerk R, Raisinger K, Rozga I, Stagliano M, Walter M, Walter PJ, Yang S, Zhou M (2019) Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab 30(1):67-77.e3. https://doi.org/10.1016/j.cmet.2019.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hätönen KA, Virtamo J, Eriksson JG, Sinkko HK, Sundvall JE, Valsta LM (2011) Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. Brit J Nutr 106(2):248–253. https://doi.org/10.1017/S0007114511000080

    Article  CAS  PubMed  Google Scholar 

  44. Karamanlis A, Chaikomin R, Doran S, Bellon M, Bartholomeusz FD, Wishart JM, Jones KL, Horowitz M, Rayner CK (2007) Effects of protein on glycemic and incretin responses and gastric emptying after oral glucose in healthy subjects. Am J Clin Nutr 86(5):1364–1368. https://doi.org/10.1093/ajcn/86.5.1364

    Article  CAS  PubMed  Google Scholar 

  45. Collier G, O’Dea K (1983) The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. Am J Clin Nutr 37(6):941–944. https://doi.org/10.1093/ajcn/37.6.941

    Article  CAS  PubMed  Google Scholar 

  46. Gao SY, Tang JL, Yi GZ, Li Z, Chen ZY, Yu L, Zheng F, Hu YJ, Tang ZG (2021) The therapeutic effects of mild to moderate intensity aerobic exercise on glycemic control in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. Diabetes Ther 12(10):2767–2781. https://doi.org/10.1007/s13300-021-01149-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moholdt T, Parr EB, Devlin BL, Debik J, Giskeodegard G, Hawley JA (2021) The effect of morning vs evening exercise training on glycaemic control and serum metabolites in overweight/obese men: a randomised trial. Diabetologia 64(9):2061–2076. https://doi.org/10.1007/s00125-021-05477-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sjoblad S (2019) Could the high consumption of high glycaemic index carbohydrates and sugars, associated with the nutritional transition to the Western type of diet, be the common cause of the obesity epidemic and the worldwide increasing incidences of Type 1 and Type 2 diabetes? Med Hypotheses 125:41–50. https://doi.org/10.1016/j.mehy.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  49. Llavero-Valero M, Escalada San Martín J, Martínez-González MA, Basterra-Gortari FJ, de la Fuente-Arrillaga C, Bes-Rastrollo M (2021) Ultra-processed foods and type-2 diabetes risk in the sun project: a prospective cohort study. Clin Nutr 40(5):2817–2824. https://doi.org/10.1016/j.clnu.2021.03.039

    Article  PubMed  Google Scholar 

  50. Nardocci M, Polsky JY, Moubarac J-C (2020) Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can J Public Health 12(3):421–429. https://doi.org/10.17269/s41997-020-00429-9

    Article  Google Scholar 

  51. Levy RB, Rauber F, Chang K, Louzada M, Monteiro CA, Millett C, Vamos EP (2020) Ultra-processed food consumption and type 2 diabetes incidence: a prospective cohort study. Clin Nutr 40(5):3608–3614. https://doi.org/10.1016/j.clnu.2020.12.018

    Article  PubMed  Google Scholar 

  52. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Debras C, Druesne-Pecollo N, Chazelas E, Deschasaux M, Hercberg S, Galan P, Monteiro CA, Julia C, Touvier M (2019) Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern Med 180(2):283–291. https://doi.org/10.1001/jamainternmed.2019.5942

    Article  PubMed Central  Google Scholar 

  53. Eaton SB, Shostak M, Konner M (1988) Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med 84(4):739–749. https://doi.org/10.1016/0002-9343(88)90113-1

    Article  CAS  PubMed  Google Scholar 

  54. WHO (2016) Rapport mondial sur le diabète. Switzerland, Geneva

    Google Scholar 

  55. Llavero-Valero M, Martin JES, Martinez-Gonzalez MA, Alvarez-Mon MA, Alvarez-Alvarez I, Martinez-Gonzalez J, Bes-Rastrollo M (2021) Promoting exercise, reducing sedentarism or both for diabetes prevention: the “Seguimiento Universidad De Navarra” (SUN) cohort. Nutr Metab Cardiovasc Dis 31(2):411–419. https://doi.org/10.1016/j.numecd.2020.09.027

    Article  PubMed  Google Scholar 

  56. Chater AM, Smith L, Ferrandino L, Wyld K, Bailey DP (2020) Health behaviour change considerations for weight loss and type 2 diabetes: nutrition, physical activity and sedentary behaviour. Pract Diabetes 37(6):228–231b. https://doi.org/10.1002/pdi.2311

    Article  Google Scholar 

  57. Alothman S, Alshehri MM, Alenazi AM, Rucker J, Kluding PM (2020) The association between sedentary behavior and health variables in people with type 2 diabetes. Health Behav Policy Rev 7(3):198–206. https://doi.org/10.14485/hbpr.7.3.4

    Article  Google Scholar 

  58. Mekary RA, Giovannucci E, Cahill L, Willett WC, van Dam RM, Hu FB (2013) Eating patterns and type 2 diabetes risk in older women: breakfast consumption and eating frequency. Am J Clin Nutr 98(2):436–443. https://doi.org/10.3945/ajcn.112.057521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mekary RA, Giovannucci E, Willett WC, van Dam RM, Hu FB (2012) Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr 95(5):1182–1189. https://doi.org/10.3945/ajcn.111.028209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ayton A, Ibrahim A, Dugan J, Galvin E, Wright OW (2021) Ultra-processed foods and binge eating: a retrospective observational study. Nutrition 84:111023. https://doi.org/10.1016/j.nut.2020.111023

    Article  PubMed  Google Scholar 

  61. Neves FS, Fontes VS, Nogueira MC, Melo AST, Campos AAL, de Lima KP, de Faria ER, Netto MP, Oliveira RMS, Carlos Cândido AP (2021) Eating contexts at breakfast, lunch, and dinner: associations with ultra-processed foods consumption and overweight in Brazilian adolescents (EVA-JF Study). Appetite. https://doi.org/10.1016/j.appet.2021.105787

    Article  PubMed  Google Scholar 

  62. Fardet A, Hoebler C, Baldwin PM, Bouchet B, Gallant DJ, Barry JL (1998) Involvement of the protein network in the in vitro degradation of starch from spaghetti and lasagne: a microscopic and enzymic Study. J Cereal Sci 27:133–145. https://doi.org/10.1006/jcrs.1997.0157

    Article  Google Scholar 

  63. Fardet A, Abecassis J, Hoebler C, Baldwin PM, Buleon A, Berot S, Barry JL (1999) Influence of technological modifications of the protein network from pasta on in vitro starch degradation. J Cereal Sci 30(2):133–145. https://doi.org/10.1006/jcrs.1999.0266

    Article  CAS  Google Scholar 

  64. Granfeldt Y, Bjorck I, Hagander B (1991) On the importance of processing conditions, product thickness and egg addition for the glycaemic and hormonal responses to pasta: a comparison with bread made from ‘pasta ingredients.’ Eur J Clin Nutr 45(10):489–499

    CAS  PubMed  Google Scholar 

  65. Imamura F, O’Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, Forouhi NG (2016) Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Bri J Sports Med 50(8):496–504. https://doi.org/10.1136/bjsports-2016-h3576rep

    Article  Google Scholar 

  66. Auerbach BJ, Littman AJ, Tinker L, Larson J, Krieger J, Young B, Neuhouser M (2017) Associations of 100% fruit juice versus whole fruit with hypertension and diabetes risk in postmenopausal women: results from the Women’s Health Initiative. Prev Med 105:212–218. https://doi.org/10.1016/j.ypmed.2017.08.031

    Article  PubMed  PubMed Central  Google Scholar 

  67. Eshak ES, Iso H, Mizoue T, Inoue M, Noda M, Tsugane S (2013) Soft drink, 100% fruit juice, and vegetable juice intakes and risk of diabetes mellitus. Clin Nutr 32(2):300–308. https://doi.org/10.1016/j.clnu.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  68. Xi B, Li SS, Liu ZL, Tian H, Yin XX, Huai PC, Tang WH, Zhou DH, Steffen LM (2014) Intake of fruit juice and incidence of type 2 diabetes: a systematic review and meta-analysis. PLoS ONE 9(3):e93471. https://doi.org/10.1371/journal.pone.0093471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scheffers FR, Wijga AH, Verschuren WMM, van der Schouw YT, Sluijs I, Smit HA, Boer JMA (2020) Pure fruit juice and fruit consumption are not associated with incidence of type 2 diabetes after adjustment for overall dietary quality in the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) Study. J Nutr 150(6):1470–1477. https://doi.org/10.1093/jn/nxz340

    Article  PubMed  PubMed Central  Google Scholar 

  70. Du HD, Li LM, Bennett D, Guo Y, Turnbull I, Yang L, Bragg F, Bian Z, Chen YP, Chen JS, Millwood IY, Sansome S, Ma LC, Huang Y, Zhang NM, Zheng XY, Sun Q, Key TJ, Collins R, Peto R, Chen ZM, China Kadoorie Biobank S (2017) Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: a 7-y prospective study of 0.5 million Chinese adults. PLoS Med 14(4):e1002279. https://doi.org/10.1371/journal.pmed.1002279

    Article  PubMed  PubMed Central  Google Scholar 

  71. Haber GB, Heaton KW, Murphy D, Burroughs LF (1977) Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose, and serum-insulin. Lancet 2(8040):679–682. https://doi.org/10.1016/s0140-6736(77)90494-9

    Article  CAS  PubMed  Google Scholar 

  72. Maljaars J, Peterst HPF, Masclee AM (2007) Review article: the gastrointestinal tract: neuroendocrine regulation of satiety and food intake. Aliment Pharmacol Ther 26(Supp. 2):241–250. https://doi.org/10.1111/j.1365-2036.2007.03550.x

    Article  PubMed  Google Scholar 

  73. Holt SH, Miller JB (1994) Particle size, satiety and the glycaemic response. Eur J Clin Nutr 48(7):496–502

    CAS  PubMed  Google Scholar 

  74. Burton P, Lightowler HJ (2006) Influence of bread volume on glycaemic response and satiety. Brit J Nutr 96(5):877–882. https://doi.org/10.1017/bjn20061900

    Article  CAS  PubMed  Google Scholar 

  75. Batista SMD, Moreira EAM, Fiates GMR, de Assis MAA, Teixeira E (2014) Effect of low glycaemic index diets on satiety. Br Food J 116(8):1233–1246. https://doi.org/10.1108/bfj-08-2012-0208

    Article  Google Scholar 

  76. Hogenkamp PS, Schioth HB (2013) Effect of oral processing behaviour on food intake and satiety. Trends Food Sci Technol 34(1):67–75. https://doi.org/10.1016/j.tifs.2013.08.010

    Article  CAS  Google Scholar 

  77. Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, Deschasaux M, Fassier P, Latino-Martel P, Beslay M, Hercberg S, Lavalette C, Monteiro CA, Julia C, Touvier M (2018) Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ 360:k322. https://doi.org/10.1136/bmj.k322

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R (2020) Environmental endocrine-disrupting chemical exposure: role in non-communicable diseases. Front Public Health 8:553850. https://doi.org/10.3389/fpubh.2020.553850

    Article  PubMed  PubMed Central  Google Scholar 

  79. Forde CG, Mars M, de Graaf K (2020) Ultra-processing or oral processing? A role for energy density and eating rate in moderating energy intake from processed foods. Curr Dev Nutr 4(3):nzaa019. https://doi.org/10.1093/cdn/nzaa019

    Article  PubMed  PubMed Central  Google Scholar 

  80. Martin C, Issanchou S (2019) Nutrient sensing: what can we learn from different tastes about the nutrient contents in today’s foods? Food Qual Pref 71:185–196. https://doi.org/10.1016/j.foodqual.2018.07.003

    Article  Google Scholar 

  81. Lustig RH (2020) Ultraprocessed food: addictive, toxic, and ready for regulation. Nutrients 12(11):3401. https://doi.org/10.3390/nu12113401

    Article  CAS  PubMed Central  Google Scholar 

  82. Schulte EM, Avena NM, Gearhardt AN (2015) Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 10(2):e0117959. https://doi.org/10.1371/journal.pone.0117959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gearhardt AN, Hebebrand J (2021) The concept of “food addiction” helps inform the understanding of overeating and obesity: debate consensus. Am J Clin Nutr 113(2):274–276. https://doi.org/10.1093/ajcn/nqaa345

    Article  PubMed  Google Scholar 

  84. Gearhardt AN, Schulte EM (2021) Is food addictive? A review of the science. Annu Rev Nutr 41:387–410. https://doi.org/10.1146/annurev-nutr-110420-111710

    Article  CAS  PubMed  Google Scholar 

  85. Tremblay A, Bellisle F (2015) Nutrients, satiety, and control of energy intake. Appl Physiol Nutr Metabol 40(10):971–979. https://doi.org/10.1139/apnm-2014-0549

    Article  Google Scholar 

  86. Moorhead SA, Welch RW, Barbara M, Livingstone E, McCourt M, Burns AA, Dunne A (2006) The effects of the fibre content and physical structure of carrots on satiety and subsequent intakes when eaten as part of a mixed meal. Br J Nutr 96(3):587–595. https://doi.org/10.1079/bjn20061790

    Article  CAS  Google Scholar 

  87. Lyly M, Liukkonen KH, Salmenkallio-Marttila M, Karhunen L, Poutanen K, Lahteenmaki L (2009) Fibre in beverages can enhance perceived satiety. Eur J Nutr 48(4):251–258. https://doi.org/10.1007/s00394-009-0009-y

    Article  CAS  PubMed  Google Scholar 

  88. Holt SH, Miller JC, Petocz P, Farmakalidis E (1995) A satiety index of common foods. Eur J Clin Nutr 49(9):675–690

    CAS  PubMed  Google Scholar 

  89. Jacobs DR, Tapsell LC, Temple NJ (2011) Food synergy: the key to balancing the nutrition research effort. Public Health Rev 33(2):507–529. https://doi.org/10.1007/bf03391648

    Article  Google Scholar 

  90. Fuller S, Beck E, Salman H, Tapsell L (2016) New horizons for the study of dietary fiber and health: a review. Plant Foods Hum Nutr 71(1):1–12. https://doi.org/10.1007/s11130-016-0529-6

    Article  CAS  PubMed  Google Scholar 

  91. Fardet A (2016) Chapter 1—do the physical structure and physicochemical characteristics of dietary fibers influence their health effects? In: Hosseinian F, Oomah BD, Campos-Vega R (eds) Dietary fibre functionality in food and nutraceuticals: from plant to gut. Wiley, Hoboken, pp 1–19

    Google Scholar 

  92. Vitaglione P, Napolitano A, Fogliano V (2008) Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 19(9):451–463. https://doi.org/10.1016/j.tifs.2008.02.005

    Article  CAS  Google Scholar 

  93. Singh V, Vijay-Kumar M (2020) Beneficial and detrimental effects of processed dietary fibers on intestinal and liver health: health benefits of refined dietary fibers need to be redefined! Gastroenterol Rep 8(2):85–89. https://doi.org/10.1093/gastro/goz072

    Article  Google Scholar 

  94. Monro J, Mishra S, Redman C, Somerfield S, Ng J (2016) Vegetable dietary fibres made with minimal processing improve health-related faecal parameters in a valid rat model. Food Funct 7(6):2645–2654. https://doi.org/10.1039/c5fo01526j

    Article  CAS  PubMed  Google Scholar 

  95. Moeller AH, Li Y, Ngole EM, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H (2014) Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA 111(46):16431–16435. https://doi.org/10.1073/pnas.1419136111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Baye K, Guyot J-P, Mouquet-Rivier C (2015) The unresolved role of dietary fibers on mineral absorption. Crit Rev Food Sci Nutr 57(5):949–957. https://doi.org/10.1080/10408398.2014.953030

    Article  CAS  Google Scholar 

  97. Fardet A (2015) Complex foods versus functional foods, nutraceuticals and dietary supplements: differential health impact (Part 1). Agro Food Ind Hi Tech 26(1):20–24

    CAS  Google Scholar 

  98. Fardet A (2010) New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 23(1):65–134. https://doi.org/10.1017/S0954422410000041

    Article  CAS  PubMed  Google Scholar 

  99. Wilcox J, Skye SM, Graham B, Zabell A, Li XS, Li L, Shelkay S, Fu X, Neale S, O’Laughlin C, Peterson K, Hazen SL, Tang WHW (2021) Dietary choline supplements, but not eggs, raise fasting TMAO levels in participants with normal renal function: a randomized clinical trial. Am J Med 134(9):1160-1169.e3. https://doi.org/10.1016/j.amjmed.2021.03.016

    Article  CAS  PubMed  Google Scholar 

  100. Fardet A, Souchon I, Dupont D (2013) Structure des aliments et effets nutritionnels. Quae, Versailles

    Google Scholar 

  101. Cassady BA, Hollis JH, Fulford AD, Considine RV, Mattes RD (2009) Mastication of almonds: effects of lipid bioaccessibility, appetite, and hormone response. Am J Clin Nutr 89(3):794–800. https://doi.org/10.3945/ajcn.2008.26669

    Article  CAS  PubMed  Google Scholar 

  102. Schmidt JM, Kjølbæk L, Jensen KJ, Rouy E, Bertram HC, Larsen T, Raben A, Astrup A, Hammershøj M (2020) Influence of type of dairy matrix micro- and macrostructure on in vitro lipid digestion. Food Funct 11(6):4960–4972. https://doi.org/10.1039/d0fo00785d

    Article  CAS  PubMed  Google Scholar 

  103. Rodriguez-Roque MJ, de Ancos B, Sanchez-Vega R, Sanchez-Moreno C, Cano MP, Elez-Martinez P, Martin-Belloso O (2016) Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages. Food Funct 7(1):380–389. https://doi.org/10.1039/c5fo01060h

    Article  CAS  PubMed  Google Scholar 

  104. Monfoulet LE, Buffiere C, Istas G, Dufour C, Le Bourvellec C, Mercier S, Bayle D, Boby C, Remond D, Borel P, Rodriguez-Mateos A, Milenkovic D, Morand C (2020) Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food Funct 11(6):5077–5090. https://doi.org/10.1039/d0fo00346h

    Article  CAS  PubMed  Google Scholar 

  105. Buffière C, Hiolle M, Peyron M-A, Richard R, Meunier N, Batisse C, Rémond D, Dupont D, Nau F, Pereira B, Savary-Auzeloux I (2020) Food matrix structure (from Biscuit to Custard) has an impact on folate bioavailability in healthy volunteers. Eur J Nutr 60(1):411–423. https://doi.org/10.1007/s00394-020-02258-5

    Article  CAS  PubMed  Google Scholar 

  106. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Cherniack MG, Brodkin CA, Hammar S (1996) Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial. J Natl Cancer Inst 88(21):1550–1559. https://doi.org/10.1093/jnci/88.21.1550

    Article  CAS  PubMed  Google Scholar 

  107. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 12(3):CD007176. https://doi.org/10.1002/14651858.CD007176.pub2

    Article  Google Scholar 

  108. Fardet A, Rock E (2016) The healthy core metabolism: a new paradigm for primary preventive nutrition. J Nutr Health Aging 20(3):239–247. https://doi.org/10.1007/s12603-015-0560-6

    Article  CAS  PubMed  Google Scholar 

  109. Fardet A, Rock E (2020) How to protect both health and food system sustainability? A holistic ‘global health’-based approach via the 3V rule proposal. Public Health Nutr 23(16):3028–3044. https://doi.org/10.1017/S136898002000227X

    Article  CAS  PubMed  Google Scholar 

  110. Fardet A, Rock E (2018) Reductionist nutrition research has meaning only within the framework of holistic thinking. Adv Nutr 9(6):655–670. https://doi.org/10.1093/advances/nmy044

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fardet A, Boirie Y (2014) Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev 72(12):741–762. https://doi.org/10.1111/nure.12153

    Article  PubMed  Google Scholar 

  112. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515(7528):518–522. https://doi.org/10.1038/nature13959

    Article  CAS  PubMed  Google Scholar 

  113. Fardet A, Rock E (2020) Ultra-processed foods and food system sustainability: what are the links? Sustainability 12(15):6280. https://doi.org/10.3390/su12156280

    Article  Google Scholar 

  114. WHO (2020) Guidance on mainstreaming biodiversity for nutrition and health. WHO, Geneva

    Google Scholar 

  115. FAO (2011) Combating micronutrient deficiencies: food-based approaches. FAO, Roma

    Google Scholar 

  116. Prag AA, Henriksen CB (2020) Transition from animal-based to plant-based food production to reduce greenhouse gas emissions from agriculture—the case of Denmark. Sustainability 12(19):8228. https://doi.org/10.3390/su12198228

    Article  CAS  Google Scholar 

  117. Petersen KS, Flock MR, Richter CK, Mukherjea R, Slavin JL, Kris-Etherton PM (2017) Healthy dietary patterns for preventing cardiometabolic disease: the role of plant-based foods and animal products. Curr Dev Nutr. https://doi.org/10.3945/cdn.117.001289

    Article  PubMed  PubMed Central  Google Scholar 

  118. Medawar E, Enzenbach C, Roehr S, Villringer A, Riedel-Heller SG, Witte AV (2020) Less animal-based food, better weight status: associations of the restriction of animal-based product intake with body-mass-index, depressive symptoms and personality in the general population. Nutrients 12(5):1492. https://doi.org/10.3390/nu12051492

    Article  PubMed Central  Google Scholar 

  119. Fardet A, Rock E (2014) Toward a new philosophy of preventive nutrition: from a reductionist to a holistic paradigm to improve nutritional recommendations. Adv Nutr 5(4):430–446. https://doi.org/10.3945/an.114.006122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Costa de Miranda R, Rauber F, Levy RB (2021) Impact of ultra-processed food consumption on metabolic health. Curr Opin Lipidol 32(1):24–37. https://doi.org/10.1097/mol.0000000000000728

    Article  CAS  PubMed  Google Scholar 

  121. Zhong G-C, Gu H-T, Peng Y, Wang K, Wu Y-Q-L, Hu T-Y, Jing F-C, Hao F-B (2021) Association of ultra-processed food consumption with cardiovascular mortality in the US population: long-term results from a large prospective multicenter study. Int J Behav Nutr Phys Act 18(1):21. https://doi.org/10.1186/s12966-021-01081-3

    Article  PubMed  PubMed Central  Google Scholar 

  122. Fardet A, Aubrun K, Rock E (2021) Nutrition transition and chronic diseases in China (1990–2019): industrially processed and animal calories rather than nutrients and total calories as potential determinants of the health impact. Public Health Nutr. https://doi.org/10.1017/S1368980021003311

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fardet A, Thivel D, Gerbaud L, Rock E (2021) A sustainable and global health perspective of the dietary pattern of French population during the 1998–2015 period from INCA surveys. Sustainability 13(13):7433. https://doi.org/10.3390/su13137433

    Article  Google Scholar 

  124. Fardet A, Lakhssassi S, Briffaz A (2018) Beyond nutritient-based food indices: a data mining approach to search for a quantitative holistic index reflecting the degree of food processing and including physicochemical properties. Foods Funct 9(1):561–572. https://doi.org/10.1039/c7fo01423f

    Article  CAS  Google Scholar 

  125. Fardet A, Méjean C, Labouré H, Andreeva VA, Féron G (2017) The degree of processing of foods which are most widely consumed by the French elderly population is associated with satiety and glycemic potentials and nutrient profiles. Food Funct 8(2):651–658. https://doi.org/10.1039/c6fo01495j

    Article  CAS  PubMed  Google Scholar 

  126. Fardet A (2016) Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food Funct 7(5):2338–2346. https://doi.org/10.1039/c6fo00107f

    Article  CAS  PubMed  Google Scholar 

  127. Fardet A (2015) Complex foods versus functional foods, nutraceuticals and dietary supplements: differential health impact (part 2). Agro Food Ind Hi Tech 26(3):20–22

    CAS  Google Scholar 

  128. Otto MCD, Mozaffarian D, Kromhout D, Bertoni AG, Sibley CT, Jacobs DR, Nettleton JA (2012) Dietary intake of saturated fat by food source and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Am J Clin Nutr 96(2):397–404. https://doi.org/10.3945/ajcn.112.037770

    Article  CAS  Google Scholar 

  129. Seiwert N, Heylmann D, Hasselwander S, Fahrer J (2020) Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 1873(1):188334. https://doi.org/10.1016/j.bbcan.2019.188334

    Article  CAS  PubMed  Google Scholar 

  130. Sasso A, Latella G (2018) Role of heme iron in the association between red meat consumption and colorectal cancer. Nutr Cancer 70(8):1173–1183. https://doi.org/10.1080/01635581.2018.1521441

    Article  PubMed  Google Scholar 

  131. Luo YZ, Henle ES, Linn S (1996) Oxidative damage to DNA constituents by iron-mediated Fenton reactions—the deoxycytidine family. J Biol Chem 271(35):21167–21176

    Article  CAS  Google Scholar 

  132. Gill SK, Rossi M, Bajka B, Whelan K (2021) Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 18(2):101–116. https://doi.org/10.1038/s41575-020-00375-4

    Article  CAS  PubMed  Google Scholar 

  133. Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37(7):727–739. https://doi.org/10.1046/j.1365-2621.2002.00618.x

    Article  CAS  Google Scholar 

  134. Ho-Pham LT, Vu BQ, Lai TQ, Nguyen ND, Nguyen TV (2012) Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans. Eur J Clin Nutr 66(1):75–82. https://doi.org/10.1038/ejcn.2011.131

    Article  CAS  PubMed  Google Scholar 

  135. Selinger E, Kuhn T, Prochazkova M, Andel M, Gojda J (2019) Vitamin B12 deficiency is prevalent among Czech vegans who do not use vitamin B12 supplements. Nutrients. https://doi.org/10.3390/nu11123019

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lederer AK, Hannibal L, Hettich M, Behringer S, Spiekerkoetter U, Steinborn C, Grundemann C, Zimmermann-Klemd AM, Muller A, Simmet T, Schmiech M, Maul-Pavicic A, Samstag Y, Huber R (2019) Vitamin B12 status upon short-term intervention with a vegan diet-a randomized controlled trial in healthy participants. Nutrients 11(11):2815. https://doi.org/10.3390/nu11112815

    Article  CAS  PubMed Central  Google Scholar 

  137. Hannibal L, Lysne V, Bjørke-Monsen AL, Behringer S, Grünert SC, Spiekerkoetter U, Jacobsen DW, Blom HJ (2016) Biomarkers and algorithms for the diagnosis of vitamin B12 deficiency. Front Mol Biosci 3:27. https://doi.org/10.3389/fmolb.2016.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Satija A, Bhupathiraju SN, Spiegelman D, Chiuve SE, Manson JE, Willett W, Rexrode KM, Rimm EB, Hu FB (2017) Healthful and unhealthful plant-based diets and the risk of coronary heart disease in US adults. J Am Coll Cardiol 70(4):411–422. https://doi.org/10.1016/j.jacc.2017.05.047

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gehring J, Touvier M, Baudry J, Julia C, Buscail C, Srour B, Hercberg S, Péneau S, Kesse-Guyot E, Allès B (2020) Consumption of ultra-processed foods by pesco-vegetarians, vegetarians, and vegans: associations with duration and age at diet initiation. J Nutr 151(1):120–131. https://doi.org/10.1093/jn/nxaa196

    Article  Google Scholar 

  140. Monteiro CA, Cannon G, Moubarac J-C, Levy RB, Louzada MLC, Jaime PC (2018) The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr 21(1):5–17. https://doi.org/10.1017/S1368980017000234

    Article  PubMed  Google Scholar 

  141. Li T, Qiu Y, Yang HS, Li MY, Zhuang XJ, Zhang SH, Feng R, Chen BL, He Y, Zeng ZR, Chen MH (2020) Systematic review and meta-analysis: association of a pre-illness Western dietary pattern with the risk of developing inflammatory bowel disease. J Dig Dis 21(7):362–371. https://doi.org/10.1111/1751-2980.12910

    Article  PubMed  Google Scholar 

  142. Alizadeh S, Djafarian K, Alizadeh M, Shab-Bidar S (2020) The relation of healthy and Western dietary patterns to the risk of endometrial and ovarian cancers: a systematic review and meta-analysis. Int J Vitam Nutr Res 90(3–4):365–375. https://doi.org/10.1024/0300-9831/a000514

    Article  CAS  PubMed  Google Scholar 

  143. Kopp W (2019) How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes 12:2221–2236. https://doi.org/10.2147/DMSO.S216791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zinöcker MK, Lindseth IA (2018) The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 10(3):365. https://doi.org/10.3390/nu10030365

    Article  CAS  PubMed Central  Google Scholar 

  145. Shakersain B, Santoni G, Larsson SC, Faxen-Irving G, Fastbom J, Fratiglioni L, Xu W (2016) Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement 12(2):100–109. https://doi.org/10.1016/j.jalz.2015.08.002

    Article  PubMed  Google Scholar 

  146. Fabiani R, Minelli L, Bertarelli G, Bacci S (2016) A Western dietary pattern increases prostate cancer risk: a systematic review and meta-analysis. Nutrients 8(10):626. https://doi.org/10.3390/nu8100626

    Article  PubMed Central  Google Scholar 

  147. García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA (2021) Nutritional components in western diet versus mediterranean diet at the gut microbiota-immune system interplay. Implic Health Dis Nutr 13(2):699. https://doi.org/10.3390/nu13020699

    Article  CAS  Google Scholar 

  148. FAO, Monteiro CA, Cannon G, Lawrence M, Louzada MLdC, Machado PP (2019) Ultra-processed foods, diet quality, and health using the NOVA classification system. FAO, Rome

    Google Scholar 

  149. Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, Abdollahpour I, Abegaz KH, Abolhassani H, Aboyans V, Abreu LG, Abrigo MRM, Abualhasan A, Abu-Raddad LJ, Abushouk AI, Adabi M, Adekanmbi V, Adeoye AM, Adetokunboh OO, Adham D, Advani SM, Agarwal G, Aghamir SMK, Agrawal A, Ahmad T, Ahmadi K, Ahmadi M, Ahmadieh H, Ahmed MB, Akalu TY, Akinyemi RO, Akinyemiju T, Akombi B, Akunna CJ, Alahdab F, Al-Aly Z, Alam K, Alam S, Alam T, Alanezi FM, Alanzi TM, Bw A, Alhabib KF, Ali M, Ali S, Alicandro G, Alinia C, Alipour V, Alizade H, Aljunid SM, Alla F, Allebeck P, Almasi-Hashiani A, Al-Mekhlafi HM, Alonso J, Altirkawi KA, Amini-Rarani M, Amiri F, Amugsi DA, Ancuceanu R, Anderlini D, Anderson JA, Andrei CL, Andrei T, Angus C, Anjomshoa M, Ansari F, Ansari-Moghaddam A, Antonazzo IC, Antonio CAT, Antony CM, Antriyandarti E, Anvari D, Anwer R, Appiah SCY, Arabloo J, Arab-Zozani M, Ariani F, Armoon B, Ärnlöv J, Arzani A, Asadi-Aliabadi M, Asadi-Pooya AA, Ashbaugh C, Assmus M, Atafar Z, Atnafu DD, Atout MMdW, Ausloos F, Ausloos M, Ayala Quintanilla BP, Ayano G, Ayanore MA, Azari S, Azarian G, Azene ZN, Badawi A et al (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258):1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2

    Article  Google Scholar 

  150. Davidou S, Christodoulou A, Frank K, Fardet A (2021) A study of ultra-processing marker profiles in 22,028 packaged ultra-processed foods using the Siga classification. J Food Comp Anal 99:103848. https://doi.org/10.1016/j.jfca.2021.103848

    Article  CAS  Google Scholar 

  151. Hu EA, Pan A, Malik V, Sun Q (2012) White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. Br Med J 344:e1454. https://doi.org/10.1136/bmj.e1454

    Article  Google Scholar 

  152. Sun Q, Spiegelman D, van Dam RM, Holmes MD, Malik VS, Willett WC, Hu FB (2010) White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med 170(11):961–969. https://doi.org/10.1001/archinternmed.2010.109

    Article  PubMed  PubMed Central  Google Scholar 

  153. Aune D, Norat T, Romundstad P, Vatten LJ (2013) Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol 28(11):845–858. https://doi.org/10.1007/s10654-013-9852-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AF and ER are equally responsible for the design, writing, and final content. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to A. Fardet.

Ethics declarations

Conflict of interest

Since 2017, A. Fardet has been a consultant and member of the Siga and Wuji & Co. society scientific committee. He is also a member of the scientific committee of the French MiamNutrition and ComplexusCare associations. Edmond Rock: none.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fardet, A., Rock, E. Chronic diseases are first associated with the degradation and artificialization of food matrices rather than with food composition: calorie quality matters more than calorie quantity. Eur J Nutr 61, 2239–2253 (2022). https://doi.org/10.1007/s00394-021-02786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02786-8

Keywords

Navigation