Skip to main content

Acute effects of cocoa flavanols on visual working memory: maintenance and updating

Abstract

Background

Consumption of cocoa flavanols may have acute physiological effects on the brain due to their ability to activate nitric oxide synthesis. Nitric oxide mediates vasodilation, which increases cerebral blood flow, and can also act as a neurotransmitter.

Objectives

This study aimed to examine whether cocoa flavanols have an acute influence on visual working memory (WM).

Methods

Two separate randomised, double-blind, placebo-controlled, counterbalanced crossover experiments were conducted on normal healthy young adult volunteers (NExp1 = 48 and NExp2 = 32, gender-balanced). In these experiments, 415 mg of cocoa flavanols were administered to test their acute effects on visual working memory. In the first experiment, memory recall precision was measured in a task that required only passive maintenance of grating orientations in WM. In the second experiment, recall was measured after active updating (mental rotation) of WM contents. Habitual daily flavanols intake, body mass index, and gender were also considered in the analysis.

Results

The results suggested that neither passive maintenance in visual WM nor active updating of WM were acutely enhanced by consumption of cocoa flavanols. Exploratory analyses with covariates (body mass index and daily flavanols intake), and the between-subjects factor of gender also showed no evidence for effects of cocoa flavanols, neither in terms of reaction time, nor accuracy.

Conclusions

Overall, cocoa flavanols did not improve visual working memory recall performance during maintenance, nor did it improve recall accuracy after memory updating.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Maurage P, Heeren A, Pesenti M (2013) Does chocolate consumption really boost nobel award chances? The peril of over-interpreting correlations in health studies. J Nutr 143:931–933. https://doi.org/10.3945/jn.113.174813

    CAS  Article  PubMed  Google Scholar 

  2. Sansone R, Ottaviani JI, Rodriguez-Mateos A et al (2017) Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies. Am J Clin Nutr 105:352–360. https://doi.org/10.3945/ajcn.116.140046

    CAS  Article  PubMed  Google Scholar 

  3. Scholey AB, French SJ, Morris PJ et al (2010) Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 24:1505–1514. https://doi.org/10.1177/0269881109106923

    CAS  Article  PubMed  Google Scholar 

  4. Mastroiacovo D, Kwik-Uribe C, Grassi D et al (2015) Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) study—a randomized controlled trial. Am J Clin Nutr 101:538–548. https://doi.org/10.3945/ajcn.114.092189

    CAS  Article  PubMed  Google Scholar 

  5. Francis ST, Head K, Morris PG, Macdonald IA (2006) The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47:215–220. https://doi.org/10.1097/00005344-200606001-00018

    Article  Google Scholar 

  6. Netherlands Ministry of Foreign Affairs (2017) The Dutch market potential for cocoa

  7. Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products—an overview. Compr Rev Food Sci Food Saf 15:73–91. https://doi.org/10.1111/1541-4337.12180

    CAS  Article  PubMed  Google Scholar 

  8. Smit HJ, Gaffan EA, Rogers PJ (2004) Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology 176:412–419. https://doi.org/10.1007/s00213-004-1898-3

    CAS  Article  PubMed  Google Scholar 

  9. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246. https://doi.org/10.3390/nu2121231

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Abbas M, Saeed F, Anjum FM et al (2017) Natural polyphenols: an overview. Int J Food Prop 20:1689–1699. https://doi.org/10.1080/10942912.2016.1220393

    CAS  Article  Google Scholar 

  11. Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31:435–445. https://doi.org/10.1016/j.mam.2010.09.006

    CAS  Article  Google Scholar 

  12. Scalbert A, Williamson G (2000) Chocolate: modern science investigates an ancient medicine. J Med Food 3:121–125. https://doi.org/10.1089/109662000416311

    Article  Google Scholar 

  13. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747. https://doi.org/10.1093/ajcn/79.5.727

    CAS  Article  PubMed  Google Scholar 

  14. Andújar I, Recio MC, Giner RM, Ríos JL (2012) Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 12:1–23. https://doi.org/10.1155/2012/906252

    CAS  Article  Google Scholar 

  15. Vogiatzoglou A, Mulligan AA, Luben RN et al (2014) Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union. Br J Nutr 111:1463–1473. https://doi.org/10.1017/S0007114513003930

    CAS  Article  PubMed  Google Scholar 

  16. Fisher NDL, Hughes M, Gerhard-Herman M, Hollenberg NK (2003) Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21:2281–2286. https://doi.org/10.1097/00004872-200312000-00016

    CAS  Article  PubMed  Google Scholar 

  17. Fraga CG, Litterio MC, Prince PD et al (2011) Cocoa flavanols: effects on vascular nitric oxide and blood pressure. J Clin Biochem Nutr 48:63–67

    CAS  Article  Google Scholar 

  18. Heiss C, André D, Petra K et al (2003) Vascular effects of cocoa rich in flavan-3-ols. J Am Med Assoc 290:1030–1031. https://doi.org/10.1001/jama.290.8.1030

    Article  Google Scholar 

  19. Karim M, McCormick K, Kappagoda CT (2000) Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130:2105S-2108S. https://doi.org/10.1093/jn/130.8.2105S

    CAS  Article  PubMed  Google Scholar 

  20. Loke WM, Hodgson JM, Proudfoot JM et al (2008) Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88:1018–1025. https://doi.org/10.1093/ajcn/88.4.1018

    CAS  Article  PubMed  Google Scholar 

  21. Karabay A, Saija JD, Field DT, Akyürek EG (2018) The acute effects of cocoa flavanols on temporal and spatial attention. Psychopharmacology 235:1497–1511. https://doi.org/10.1007/s00213-018-4861-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Calver A, Collier J, Vallance P (1992) Nitric oxide and blood vessels: physiological role and clinical implications. Biochem Educ 20:130–135. https://doi.org/10.1016/0307-4412(92)90048-Q

    CAS  Article  Google Scholar 

  23. Hardingham N, Dachtler J, Fox K (2013) The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 7:1–19. https://doi.org/10.3389/fncel.2013.00190

    CAS  Article  Google Scholar 

  24. Vincent SR (2010) Nitric oxide neurons and neurotransmission. Prog Neurobiol 90:246–255. https://doi.org/10.1016/j.pneurobio.2009.10.007

    CAS  Article  PubMed  Google Scholar 

  25. Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:60–67. https://doi.org/10.1016/0166-2236(91)90022-M

    CAS  Article  PubMed  Google Scholar 

  26. Huang EP (1997) Synaptic plasticity: a role for nitric oxide in LTP. Curr Biol 7:141–143. https://doi.org/10.1016/S0960-9822(97)70073-3

    Article  Google Scholar 

  27. Epstein FH, Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012. https://doi.org/10.1056/NEJM199312303292706

    Article  Google Scholar 

  28. Field DT, Williams CM, Butler LT (2011) Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav 103:255–260. https://doi.org/10.1016/j.physbeh.2011.02.013

    CAS  Article  PubMed  Google Scholar 

  29. Massee LA, Ried K, Pase M et al (2015) The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: a randomized, controlled trial. Front Pharmacol 6:1–13. https://doi.org/10.3389/fphar.2015.00093

    CAS  Article  Google Scholar 

  30. Grassi D, Socci V, Tempesta D et al (2016) Flavanol-rich chocolate acutely improves arterial function and working memory performance counteracting the effects of sleep deprivation in healthy individuals. J Hypertens 34:1298–1308. https://doi.org/10.1097/HJH.0000000000000926

    CAS  Article  PubMed  Google Scholar 

  31. Scholey A, Owen L (2013) Effects of chocolate on cognitive function and mood: a systematic review. Nutr Rev 71:665–681. https://doi.org/10.1111/nure.12065

    Article  PubMed  Google Scholar 

  32. Socci V, Tempesta D, Desideri G et al (2017) Enhancing human cognition with cocoa flavonoids. Front Nutr 4:1–7. https://doi.org/10.3389/fnut.2017.00019

    CAS  Article  Google Scholar 

  33. Barrera-Reyes PK, de Lara JCF, González-Soto M, Tejero ME (2020) Effects of cocoa-derived polyphenols on cognitive function in humans. Systematic review and analysis of methodological aspects. Plant Foods Hum Nutr. https://doi.org/10.1007/s11130-019-00779-x

    Article  PubMed  Google Scholar 

  34. Veronese N, Demurtas J, Celotto S et al (2019) Is chocolate consumption associated with health outcomes? An umbrella review of systematic reviews and meta-analyses. Clin Nutr 38:1101–1108. https://doi.org/10.1016/j.clnu.2018.05.019

    CAS  Article  PubMed  Google Scholar 

  35. Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B (2010) The concurrent validity of the N-back task as a working memory measure. Memory 18:394–412. https://doi.org/10.1080/09658211003702171

    Article  PubMed  Google Scholar 

  36. Faul F, Erdfelder E, Lang AG, Buchneri A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  Google Scholar 

  37. Mathôt S, Schreij D, Theeuwes J (2012) OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav Res Methods 44:314–324. https://doi.org/10.3758/s13428-011-0168-7

    Article  PubMed  Google Scholar 

  38. Suchow JW, Brady TF, Fougnie D, Alvarez GA (2013) Modeling visual working memory with the MemToolbox. J Vis 13:1–8. https://doi.org/10.1167/13.10.9

    Article  Google Scholar 

  39. Zhang W, Luck SJ (2008) Discrete fixed-resolution representations in visual working memory. Nature 453:233–235. https://doi.org/10.1038/nature06860

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Bays PM, Catalao RFG, Husain M (2009) The precision of visual working memory is set by allocation of a shared resource. J Vis 9:1–11. https://doi.org/10.1167/9.10.7

    Article  PubMed  Google Scholar 

  41. Mathôt S (2017) Bayes like a Baws: interpreting Bayesian repeated measures in JASP [Blog Post]. https://www.cogsci.nl/blog/interpreting-bayesian-repeatedmeasures-in-jasp

  42. Aczel B, Palfi B, Szaszi B (2017) Estimating the evidential value of significant results in psychological science. PLoS ONE 12:4–11. https://doi.org/10.1371/journal.pone.0182651

    CAS  Article  Google Scholar 

  43. Westfall PH, Johnson WO, Utts JM (1997) A Bayesian perspective on the Bonferroni adjustment. Biometrika 84:419–427. https://doi.org/10.1093/biomet/84.2.419

    Article  Google Scholar 

  44. Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423. https://doi.org/10.1016/S1364-6613(03)00197-9

    Article  PubMed  Google Scholar 

  45. Stokes MG (2015) “Activity-silent” working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn Sci 19:394–405. https://doi.org/10.1016/j.tics.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wolff MJ, Jochim J, Akyürek EG, Stokes MG (2017) Dynamic hidden states underlying working-memory-guided behavior. Nat Neurosci 20:864–871. https://doi.org/10.1038/nn.4546

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Camfield DA, Scholey A, Pipingas A et al (2012) Steady state visually evoked potential (SSVEP) topography changes associated with cocoa flavanol consumption. Physiol Behav 105:948–957. https://doi.org/10.1016/j.physbeh.2011.11.013

    CAS  Article  PubMed  Google Scholar 

  48. Pase MP, Scholey AB, Pipingas A et al (2013) Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J Psychopharmacol 27:451–458. https://doi.org/10.1177/0269881112473791

    CAS  Article  PubMed  Google Scholar 

  49. Brickman AM, Khan UA, Provenzano FA et al (2014) Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci 17:1798–1803. https://doi.org/10.1038/nn.3850

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Neshatdoust S, Saunders C, Castle SM et al (2016) High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Heal Aging 4:81–93. https://doi.org/10.3233/nha-1615

    CAS  Article  Google Scholar 

  51. Hering A, Meuleman B, Bürki C et al (2017) Improving older adults’ working memory: the influence of age and crystallized intelligence on training outcomes. J Cogn Enhanc 1:358–373. https://doi.org/10.1007/s41465-017-0041-4

    Article  Google Scholar 

  52. Kreijkamp-Kaspers S, Kok L, Grobbee DE et al (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipilds in postmenopausal women: a randomized controlled trial. J Am Med Assoc 292:65–74. https://doi.org/10.1001/jama.292.1.65

    CAS  Article  Google Scholar 

  53. Macready AL, Kennedy OB, Ellis JA et al (2009) Flavonoids and cognitive function: a review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr 4:227–242. https://doi.org/10.1007/s12263-009-0135-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Altınok.

Ethics declarations

Conflict of interest

Ahmet Altınok, Aytaç Karabay and Elkan G. Akyürek have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altınok, A., Karabay, A. & Akyürek, E.G. Acute effects of cocoa flavanols on visual working memory: maintenance and updating. Eur J Nutr 61, 1665–1678 (2022). https://doi.org/10.1007/s00394-021-02767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02767-x

Keywords

  • Cocoa flavanols
  • Visual working memory
  • Mental rotation