Abstract
Purpose
Probiotics, as live microorganisms that improve intestinal microbial balance, have been implicated in the modulation of neurodegenerative diseases via the microbiome–gut–brain axis by improving gut dysbiosis. This review examines the association between probiotics and neurocognitive function in age-related dementia.
Methods
We searched MEDLINE, Embase, Scopus, Web of Science and Cochrane library for in vivo studies using equivalent combinations of “probiotics” and “dementia” as per PRISMA. From the 52 in vivo studies identified, 5 human and 22 animal studies with comparable quantitative outcomes on neurocognitive/behavioural function were meta-analysed by forest plots, subgroup analysis and meta-regression. The analysis of biomarkers, risk of bias and publication bias were also performed.
Results
In elderly humans, probiotics correlates with a non-significant difference of neurocognitive function in Mini-Mental State Examination, but with significant improvement only in those diagnosed with Alzheimer’s disease. In animals, probiotics significantly improved neurocognitive function as measured by Morris Water Maze, Y-Maze, and Passive Avoidance. Further analysis by subgrouping and meta-regression found that the probiotics-neurodegeneration association is age dependent in humans but is neither dose dependent nor duration dependent in animals or humans. Analysis of biomarkers suggested that the neurocognitive effect of probiotics is associated with an altered gut microbiome profile, downregulated proteinopathic, inflammatory and autophagic pathways, and upregulated anti-oxidative, neurotrophic, and cholinergic pathways.
Conclusion
Overall, we report promising results in animal studies but limited evidence of probiotics leading to neurocognitive improvement in humans. More research into probiotics should be conducted, especially on live biotherapeutic products for targeted treatment of gut dysbiosis and age-related dementia.
This is a preview of subscription content,
to check access.







References
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787
Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. https://doi.org/10.1152/physrev.00045.2009
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26(1):26191. https://doi.org/10.3402/mehd.v26.26191
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067
Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. https://doi.org/10.1074/jbc.M110.209296
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147. https://doi.org/10.1016/s0891-5849(96)00629-6
Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147. https://doi.org/10.1136/jnnp.66.2.137
Morais LH, Schreiber HLt, Mazmanian SK, (2021) The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–255. https://doi.org/10.1038/s41579-020-00460-0
Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141 (2):599–609, 609 e591–593. https://doi.org/10.1053/j.gastro.2011.04.052
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463. https://doi.org/10.1016/j.cell.2013.11.024
Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK (2019) Microbiome-microglia connections via the gut-brain axis. J Exp Med 216(1):41–59. https://doi.org/10.1084/jem.20180794
Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T (2019) Inflammatory bowel disease increases the risk of Parkinson’s disease: a Danish nationwide cohort study 1977–2014. Gut 68(1):18–24. https://doi.org/10.1136/gutjnl-2017-315666
Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537. https://doi.org/10.1038/s41598-017-13601-y
Hotel ACP, Cordoba A (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5(1):1–10
Brown AC, Valiere A (2004) Probiotics and medical nutrition therapy. Nutr Clin Care 7(2):56–68
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341. https://doi.org/10.1016/j.ijsu.2010.02.007
Pique N, Berlanga M, Minana-Galbis D (2019) Health benefits of heat-killed (Tyndallized) probiotics: an overview. Int J Mol Sci 20(10):2534. https://doi.org/10.3390/ijms20102534
Tombaugh TN, McIntyre NJ (1992) The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 40(9):922–935. https://doi.org/10.1111/j.1532-5415.1992.tb01992.x
D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90. https://doi.org/10.1016/s0165-0173(01)00067-4
Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28(5):497–505. https://doi.org/10.1016/j.neubiorev.2004.06.006
Ogren SO, Eriksson TM, Elvander-Tottie E, D’Addario C, Ekstrom JC, Svenningsson P, Meister B, Kehr J, Stiedl O (2008) The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res 195(1):54–77. https://doi.org/10.1016/j.bbr.2008.02.023
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14(1):43. https://doi.org/10.1186/1471-2288-14-43
Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernan MA, Hopewell S, Hrobjartsson A, Junqueira DR, Juni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898
Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x
Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48
Collaboration C (2020) Review Manager (RevMan)[Computer program]. Version 5.4 for Windows. Oxford: The Cochrane Collaboration
Bergeron D, Flynn K, Verret L, Poulin S, Bouchard RW, Bocti C, Fülöp T, Lacombe G, Gauthier S, Nasreddine Z (2017) Multicenter validation of an MMSE-Mo CA conversion table. J Am Geriatr Soc 65(5):1067–1072
Lidbeck A, Nord CE (1993) Lactobacilli and the normal human anaerobic microflora. Clin Infect Dis 16 Suppl 4 (Supplement_4):S181–187. https://doi.org/10.1093/clinids/16.supplement_4.s181
Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99(22):14422–14427. https://doi.org/10.1073/pnas.212527599
Zhou C, Zhao H, Xiao XY, Chen BD, Guo RJ, Wang Q, Chen H, Zhao LD, Zhang CC, Jiao YH, Ju YM, Yang HX, Fei YY, Wang L, Shen M, Li H, Wang XH, Lu X, Yang B, Liu JJ, Li J, Peng LY, Zheng WJ, Zhang CY, Zhou JX, Wu QJ, Yang YJ, Su JM, Shi Q, Wu D, Zhang W, Zhang FC, Jia HJ, Liu DP, Jie ZY, Zhang X (2020) Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun 107:102360. https://doi.org/10.1016/j.jaut.2019.102360
Corpuz HM, Ichikawa S, Arimura M, Mihara T, Kumagai T, Mitani T, Nakamura S, Katayama S (2018) Long-term diet supplementation with lactobacillus paracasei K71 prevents age-related cognitive decline in senescence-accelerated mouse prone 8. Nutrients 10(6):762. https://doi.org/10.3390/nu10060762
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005
Guidance for industry: early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information (2016) US Food and Drug Administration
Rouanet A, Bolca S, Bru A, Claes I, Cvejic H, Girgis H, Harper A, Lavergne SN, Mathys S, Pane M, Pot B, Shortt C, Alkema W, Bezulowsky C, Blanquet-Diot S, Chassard C, Claus SP, Hadida B, Hemmingsen C, Jeune C, Lindman B, Midzi G, Mogna L, Movitz C, Nasir N, Oberreither M, Seegers J, Sterkman L, Valo A, Vieville F, Cordaillat-Simmons M (2020) Live biotherapeutic products, a road map for safety assessment. Front Med (Lausanne) 7:237. https://doi.org/10.3389/fmed.2020.00237
O’Toole PW, Marchesi JR, Hill C (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2(5):17057. https://doi.org/10.1038/nmicrobiol.2017.57
Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, Guerra e Oliveira T, Campos-Toimil M, Meyrelles SS, Pereira TMC, Vasquez EC (2020) Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxidative Med Cell Longevity 2020:2638703. https://doi.org/10.1155/2020/2638703
Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17(7):770–775. https://doi.org/10.1016/j.idairyj.2006.10.006
Agahi A, Hamidi G, Salami M, Alinaghipour A, Daneshvar Kakhaki R, Soheili M (2018) The effect of probiotic supplementations on cognitive function in patients with primary and secondary Alzheimer. J Arak University Med Sci 20(12):1–9
Agahi A, Hamidi GA, Daneshvar R, Hamdieh M, Soheili M, Alinaghipour A, Esmaeili Taba SM, Salami M (2018) Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front Neurol 9:662
Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Hamidi GA, Salami M (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 8:256. https://doi.org/10.3389/fnagi.2016.00256
Bernier F, Ohno K, Katsumata N, Shimizu T, Xiao J (2021) Association of plasma hemoglobin A1c with improvement of cognitive functions by probiotic Bifidobacterium breve supplementation in healthy adults with mild cognitive impairment. J Alzheimers Dis 81(2):493–497. https://doi.org/10.3233/JAD-201488
Hwang YH, Park S, Paik JW, Chae SW, Kim DH, Jeong DG, Ha E, Kim M, Hong G, Park SH, Jung SJ, Lee SM, Na KH, Kim J, Chung YC (2019) Efficacy and safety of lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-Week, multi-center, randomized, double-blind. Placebo-Controll Clin Trial Nutr 11(2):305. https://doi.org/10.3390/nu11020305
Inoue T, Kobayashi Y, Mori N, Sakagawa M, Xiao JZ, Moritani T, Sakane N, Nagai N (2018) Effect of combined bifidobacteria supplementation and resistance training on cognitive function, body composition and bowel habits of healthy elderly subjects. Benef Microbes 9(6):843–853. https://doi.org/10.3920/BM2017.0193
Kim CS, Cha L, Sim M, Jung S, Chun WY, Baik HW, Shin DM (2021) Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci 76(1):32–40. https://doi.org/10.1093/gerona/glaa090
Kobayashi Y, Kinoshita T, Matsumoto A, Yoshino K, Saito I, Xiao JZ (2019) Bifidobacterium Breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: an open-label. Single-Arm Study J Prev Alzheimers Dis 6(1):70–75. https://doi.org/10.14283/jpad.2018.32
Kobayashi Y, Kuhara T, Oki M, Xiao JZ (2019) Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef Microbes 10(5):511–520. https://doi.org/10.3920/BM2018.0170
Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM (2018) Probiotic supplementation in patients with Alzheimer’s Dementia - an explorative intervention study. Curr Alzheimer Res 15(12):1106–1113. https://doi.org/10.2174/1389200219666180813144834
Louzada ER, Ribeiro SML (2020) Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr Neurosci 23(2):93–100. https://doi.org/10.1080/1028415X.2018.1477349
Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, Tajabadi-Ebrahimi M, Asemi Z (2019) Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr 38(6):2569–2575. https://doi.org/10.1016/j.clnu.2018.11.034
Xiao J, Katsumata N, Bernier F, Ohno K, Yamauchi Y, Odamaki T, Yoshikawa K, Ito K, Kaneko T (2020) Probiotic Bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment: a randomized, double-blind. Placebo-Controlled Trial J Alzheimers Dis 77(1):139–147. https://doi.org/10.3233/JAD-200488
Abraham D, Feher J, Scuderi GL, Szabo D, Dobolyi A, Cservenak M, Juhasz J, Ligeti B, Pongor S, Gomez-Cabrera MC, Vina J, Higuchi M, Suzuki K, Boldogh I, Radak Z (2019) Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp Gerontol 115:122–131. https://doi.org/10.1016/j.exger.2018.12.005
Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F, Sharifzadeh M, Vafa M (2018) Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1–42) injected rats. Appl Physiol Nutr Metab 43(7):718–726. https://doi.org/10.1139/apnm-2017-0648
Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, Fiorini D, Boarelli MC, Rossi G, Eleuteri AM (2017) Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7(1):2426. https://doi.org/10.1038/s41598-017-02587-2
Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, Rossi G, Eleuteri AM (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55(10):7987–8000. https://doi.org/10.1007/s12035-018-0973-4
Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M, Rossi G, Eleuteri AM (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43
Cao J, Amakye WK, Qi C, Liu X, Ma J, Ren J (2021) Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model. Eur J Nutr. https://doi.org/10.1007/s00394-021-02543-x
Cogliati S, Clementi V, Francisco M, Crespo C, Arganaraz F, Grau R (2020) Bacillus subtilis delays neurodegeneration and behavioral impairment in the Alzheimer’s disease model caenorhabditis elegans. J Alzheimers Dis 73(3):1035–1052. https://doi.org/10.3233/JAD-190837
Distrutti E, O’Reilly JA, McDonald C, Cipriani S, Renga B, Lynch MA, Fiorucci S (2014) Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS ONE 9(9):e106503. https://doi.org/10.1371/journal.pone.0106503
Go J, Chang DH, Ryu YK, Park HY, Lee IB, Noh JR, Hwang DY, Kim BC, Kim KS, Lee CH (2021) Human gut microbiota Agathobaculum butyriciproducens improves cognitive impairment in LPS-induced and APP/PS1 mouse models of Alzheimer’s disease. Nutr Res 86:96–108. https://doi.org/10.1016/j.nutres.2020.12.010
Ho ST, Hsieh YT, Wang SY, Chen MJ (2019) Improving effect of a probiotic mixture on memory and learning abilities in d-galactose-treated aging mice. J Dairy Sci 102(3):1901–1909. https://doi.org/10.3168/jds.2018-15811
Huang SY, Chen LH, Wang MF, Hsu CC, Chan CH, Li JX, Huang HY (2018) Lactobacillus paracasei PS23 delays progression of age-related cognitive decline in senescence accelerated mouse prone 8 (SAMP8) mice. Nutrients 10(7):894. https://doi.org/10.3390/nu10070894
Jeong JJ, Kim KA, Ahn YT, Sim JH, Woo JY, Huh CS, Kim DH (2015) Probiotic mixture KF attenuates age-dependent memory deficit and lipidemia in fischer 344 rats. J Microbiol Biotechnol 25(9):1532–1536. https://doi.org/10.4014/jmb.1505.05002
Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH (2012) Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J Appl Microbiol 113(6):1498–1506. https://doi.org/10.1111/j.1365-2672.2012.05437.x
Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK (2020) Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease. Neurobiol Aging 92:114–134. https://doi.org/10.1016/j.neurobiolaging.2020.04.009
Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao JZ (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7(1):13510. https://doi.org/10.1038/s41598-017-13368-2
Lew L-C, Hor Y-Y, Jaafar M-H, Khoo B-Y, Sasidharan S, Choi S-B, Ong K-L, Kato T, Nakanishi Y, Ohno H (2019) Effects of potential probiotic strains on the fecal microbiota and metabolites of d-galactose-induced aging rats fed with high-fat diet. Probiotics Antimicrob Prot 12:1–18
Lee HJ, Lim SM, Kim DH (2018) Lactobacillus johnsonii CJLJ103 attenuates scopolamine-induced memory impairment in mice by increasing BDNF expression and inhibiting NF-kappaB activation. J Microbiol Biotechnol 28(9):1443–1446. https://doi.org/10.4014/jmb.1805.05025
Lee HJ, Lee KE, Kim JK, Kim DH (2019) Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci Rep 9(1):11814. https://doi.org/10.1038/s41598-019-48342-7
Nimgampalle M, Kuna Y (2017) Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s Disease induced Albino Rats. J Clin Diagn Res. https://doi.org/10.7860/JCDR/2017/26106.10428
Mehrabadi S, Sadr SS (2020) Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran Biomed J 24(4):220–228. https://doi.org/10.29252/ibj.24.4.220
Ni Y, Yang X, Zheng L, Wang Z, Wu L, Jiang J, Yang T, Ma L, Fu Z (2019) Lactobacillus and bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol Nutr Food Res 63(22):e1900603. https://doi.org/10.1002/mnfr.201900603
Ou Z, Deng L, Lu Z, Wu F, Liu W, Huang D, Peng Y (2020) Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes 10(1):12. https://doi.org/10.1038/s41387-020-0115-8
Patel C, Pande S, Acharya S (2020) Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch Pharmacol 393(10):1955–1962. https://doi.org/10.1007/s00210-020-01904-3
Qian Y, Zhang J, Zhou X, Yi R, Mu J, Long X, Pan Y, Zhao X, Liu W (2018) Lactobacillus plantarum CQPC11 isolated from sichuan pickled cabbages antagonizes d-galactose-induced oxidation and aging in mice. Molecules 23(11):3026. https://doi.org/10.3390/molecules23113026
Rezaeiasl Z, Salami M, Sepehri G (2019) The effects of probiotic Lactobacillus and Bifidobacterium strains on memory and learning behavior, long-term potentiation (LTP), and some biochemical parameters in β-amyloid-induced rat’s model of Alzheimer’s disease. Preven Nutr Food Sci 24(3):265
Asl ZR, Sepehri G, Salami M (2019) Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease. Behav Brain Res 376:112183
Romo-Araiza A, Gutiérrez-Salmeán G, Galván EJ, Hernández-Frausto M, Herrera-López G, Romo-Parra H, García-Contreras V, Fernández-Presas AM, Jasso-Chávez R, Borlongan CV (2018) Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats. Front Aging Neurosci 10:416
Shamsipour S, Sharifi G, Taghian F (2021) An 8-week administration of bifidobacterium bifidum and lactobacillus plantarum combined with exercise training alleviates neurotoxicity of abeta and spatial learning via acetylcholine in Alzheimer rat model. J Mol Neurosci 71(7):1495–1505. https://doi.org/10.1007/s12031-021-01812-y
Song GL, Chen C, Wu QY, Zhang ZH, Zheng R, Chen Y, Jia SZ, Ni JZ (2018) Selenium-enriched yeast inhibited beta-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer’s disease. Metallomics 10(8):1107–1115. https://doi.org/10.1039/c8mt00041g
Sun J, Xu J, Yang B, Chen K, Kong Y, Fang N, Gong T, Wang F, Ling Z, Liu J (2020) Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res 64(2):e1900636. https://doi.org/10.1002/mnfr.201900636
Teglas T, Abraham D, Jokai M, Kondo S, Mohammadi R, Feher J, Szabo D, Wilhelm M, Radak Z (2020) Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice. Biogerontology 21(6):807–815. https://doi.org/10.1007/s10522-020-09895-7
Wang F, Xu T, Zhang Y, Zheng T, He Y, He F, Jiang Y (2020) Long-term combined administration of Bifidobacterium bifidum TMC3115 and Lactobacillus plantarum 45 alleviates spatial memory impairment and gut dysbiosis in APP/PS1 mice. FEMS Microbiol Lett 367(7):fnaa048. https://doi.org/10.1093/femsle/fnaa048
Wang QJ, Shen YE, Wang X, Fu S, Zhang X, Zhang YN, Wang RT (2020) Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging (Albany NY) 12(1):628–649. https://doi.org/10.18632/aging.102645
Westfall S, Lomis N, Prakash S (2019) A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS ONE 14(4):e0214985. https://doi.org/10.1371/journal.pone.0214985
Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH (2014) Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 27:22–26. https://doi.org/10.1016/j.anaerobe.2014.03.003
Yang X, Yu D, Xue L, Li H, Du J (2020) Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 10(3):475–487. https://doi.org/10.1016/j.apsb.2019.07.001
Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, Azlan A, Azzam G, Liong MT (2020) Lactobacillus plantarum DR7 improved brain health in aging rats via the serotonin, inflammatory and apoptosis pathways. Benef Microbes 11(8):753–766. https://doi.org/10.3920/BM2019.0200
Zhang ZH, Wen L, Wu QY, Chen C, Zheng R, Liu Q, Ni JZ, Song GL (2017) Long-term dietary supplementation with selenium-enriched yeast improves cognitive impairment, reverses synaptic deficits, and mitigates tau pathology in a triple transgenic mouse model of Alzheimer’s disease. J Agric Food Chem 65(24):4970–4979. https://doi.org/10.1021/acs.jafc.7b01465
Zhao X, Yi R, Zhou X, Mu J, Long X, Pan Y, Song JL, Park KY (2019) Preventive effect of Lactobacillus plantarum KSFY02 isolated from naturally fermented yogurt from Xinjiang, China, on d-galactose-induced oxidative aging in mice. J Dairy Sci 102(7):5899–5912. https://doi.org/10.3168/jds.2018-16033
Funding
This study has no source of funding.
Author information
Authors and Affiliations
Contributions
Prof. Francis Ka Leung Chan is the guarantor of this review article. HYH and CHC have joint authorship of this publication. HYH, CHC and WYM performed the literature review and wrote the manuscript. HYH and CHC drafted the tables and figures. WYM and FKL proposed the review project, WYM, TZ, HK and FKL critically revised the manuscript, WYM and FKL supervised the review process. All authors approved the final version of the article, including the authorship list.
Corresponding author
Ethics declarations
Availability of data and material
Not applicable.
Code availability
Not applicable.
Conflict of interest
The authors declare no conflict of interest related to this work.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Documentation
The progress of this study has been documented from conception on ResearchGate (https://www.researchgate.net/project/Probiotic-modulation-on-neurocognitive-decline).
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Meng, H.Y.H., Mak, C.C.H., Mak, W.Y. et al. Probiotic supplementation demonstrates therapeutic potential in treating gut dysbiosis and improving neurocognitive function in age-related dementia. Eur J Nutr 61, 1701–1734 (2022). https://doi.org/10.1007/s00394-021-02760-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-021-02760-4