Skip to main content

Advertisement

Log in

FODMAPs, inflammatory bowel disease and gut microbiota: updated overview on the current evidence

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Based on the fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) hypothesis, the low-FODMAP diet has been suggested as a potential therapeutic approach for inflammatory bowel disease (IBD) with promising results on disease management. However, this diet implies a specific broad food restriction, which potentially increases the risk of nutritional deficiencies and may aggravate gut microbiota dysbiosis of IBD patients. The aim of the present study is to review the effect of individual FODMAPs on the human gut microbiota. In addition, this narrative review provides an updated overview of the use of the low-FODMAP diet in IBD, namely the implementation, advantages, limitations, and the impact on the gut microbiota.

Methods

The literature search strategy was applied to PubMed and Web of Science using relevant keywords, IBD, FODMAPs, Fructose, Lactose, Polyols, FOS, GOS, low-FODMAP diet and gut microbiota.

Results

Current data suggest that the low-FODMAP diet may effectively improve clinical outcomes in the management of IBD and ensure better quality of life for IBD patients. However, there is evidence highlighting some issues of concern, particularly the adequacy of the diet and the impact on the gut microbiota. The various FODMAP types differently modulate the gut microbiota.

Conclusion

IBD management should be achieved with the least possible dietary restriction to avoid detrimental consequences, particularly on nutritional adequacy and gut microbiota. Thus, it is important to individualize and monitor the nutrition intervention. Further studies are required to better characterize the relationship between diet, the gut microbiota, and IBD to support the generalization of this approach for clinical practice in IBD therapy and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Ruemmele FM (2016) Role of diet in inflammatory bowel disease. Ann Nutr Metab 68(Suppl 1):33–41. https://doi.org/10.1159/000445392

    Article  PubMed  Google Scholar 

  2. Ordás I, Eckmann L, Talamini M et al (2012) Ulcerative colitis. Lancet 380:1606–1619. https://doi.org/10.1016/S0140-6736(12)60150-0

    Article  PubMed  Google Scholar 

  3. Ng SC, Shi HY, Hamidi N et al (2018) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390:2769–2778. https://doi.org/10.1016/s0140-6736(17)32448-0PMID-29050646

    Article  Google Scholar 

  4. Alatab S, Sepanlou SG, Ikuta K et al (2020) The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 5:17–30. https://doi.org/10.1016/S2468-1253(19)30333-4

    Article  Google Scholar 

  5. Bernstein CN, Shanahan F (2008) Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 57:1185–1191. https://doi.org/10.1136/gut.2007.122143

    Article  PubMed  Google Scholar 

  6. Annese V (2020) Genetics and epigenetics of IBD. Pharmacol Res 159:104892. https://doi.org/10.1016/j.phrs.2020.104892PMID-32464322

    Article  CAS  PubMed  Google Scholar 

  7. Turpin W, Goethel A, Bedrani L, Kenneth Croitoru MDCM (2018) Determinants of IBD heritability: genes, bugs, and more. Inflamm Bowel Dis 24:1133–1148. https://doi.org/10.1093/ibd/izy085PMID-29701818

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336. https://doi.org/10.1038/nature10213;10.1038/nature10213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. https://doi.org/10.1126/science.1110591

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tap J, Mondot S, Levenez F et al (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584. https://doi.org/10.1111/j.1462-2920.2009.01982.x

    Article  PubMed  Google Scholar 

  12. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290. https://doi.org/10.1038/nrmicro2540

    Article  CAS  PubMed  Google Scholar 

  13. Salonen A, Lahti L, Salojärvi J et al (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. https://doi.org/10.1038/ismej.2014.63

    Article  PubMed  PubMed Central  Google Scholar 

  14. Simões CD, Maukonen J, Kaprio J et al (2013) Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J Nutr 143:417–423. https://doi.org/10.3945/jn.112.166322

    Article  CAS  PubMed  Google Scholar 

  15. Jones RB, Zhu X, Moan E et al (2018) Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci Rep 8:4139. https://doi.org/10.1038/s41598-018-22408-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ni J, Wu GD, Albenberg L, Tomov VT (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14:573–584. https://doi.org/10.1038/nrgastro.2017.88

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang MS, Poles J, Leung JM et al (2015) Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation. Gut Microbes 6:48–56. https://doi.org/10.1080/19490976.2014.1000080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansen TH, Gøbel RJ, Hansen T, Pedersen O (2015) The gut microbiome in cardio-metabolic health. Genome Med 7:33. https://doi.org/10.1186/s13073-015-0157-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Forbes JD, Van Domselaar G, Bernstein CN (2016) Microbiome survey of the inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. Inflamm Bowel Dis 22:817–825. https://doi.org/10.1097/MIB.0000000000000684

    Article  PubMed  Google Scholar 

  20. Dharmani P, Strauss J, Ambrose C et al (2011) Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun 79:2597–2607. https://doi.org/10.1128/IAI.05118-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu H, Hong XL, Sun TT et al (2020) Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis 21:385–398. https://doi.org/10.1111/1751-2980.12909

    Article  CAS  PubMed  Google Scholar 

  22. Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277

    Article  PubMed  PubMed Central  Google Scholar 

  23. Simrén M, Barbara G, Flint HJ et al (2013) Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62:159–176. https://doi.org/10.1136/gutjnl-2012-302167

    Article  PubMed  Google Scholar 

  24. Bäckhed F, Fraser CM, Ringel Y et al (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12:611–622. https://doi.org/10.1016/j.chom.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  25. Sartor RB, Wu GD (2017) Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152:327-339.e4. https://doi.org/10.1053/j.gastro.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  26. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521. https://doi.org/10.1172/JCI30587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alam MT, Amos GCA, Murphy ARJ et al (2020) Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathog 12:1. https://doi.org/10.1186/s13099-019-0341-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pittayanon R, Lau JT, Leontiadis GI et al (2020) Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158:930-946.e1. https://doi.org/10.1053/j.gastro.2019.11.294

    Article  PubMed  Google Scholar 

  29. Machiels K, Joossens M, Sabino J et al (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1275–1283. https://doi.org/10.1136/gutjnl-2013-304833

    Article  CAS  PubMed  Google Scholar 

  30. Magnusson MK, Isaksson S, Öhman L (2020) The anti-inflammatory immune regulation induced by butyrate is impaired in inflamed intestinal mucosa from patients with ulcerative colitis. Inflammation 43:507–517. https://doi.org/10.1007/s10753-019-01133-8

    Article  CAS  PubMed  Google Scholar 

  31. Ferrer-Picón E, Dotti I, Corraliza AM et al (2020) Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease. Inflamm Bowel Dis 26:43–55. https://doi.org/10.1093/ibd/izz119

    Article  PubMed  Google Scholar 

  32. Png CW, Lindén SK, Gilshenan KS et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428. https://doi.org/10.1038/ajg.2010.281

    Article  CAS  PubMed  Google Scholar 

  33. James SL, Christophersen CT, Bird AR et al (2015) Abnormal fibre usage in UC in remission. Gut 64:562–570. https://doi.org/10.1136/gutjnl-2014-307198

    Article  CAS  PubMed  Google Scholar 

  34. Gobert AP, Sagrestani G, Delmas E et al (2016) The human intestinal microbiota of constipated-predominant irritable bowel syndrome patients exhibits anti-inflammatory properties. Sci Rep 6:39399. https://doi.org/10.1038/srep39399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagao-Kitamoto H, Kamada N (2017) Host-microbial cross-talk in inflammatory bowel disease. Immune Netw 17:1–12. https://doi.org/10.4110/in.2017.17.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hall AB, Yassour M, Sauk J et al (2017) A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 9:103. https://doi.org/10.1186/s13073-017-0490-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prosberg M, Bendtsen F, Vind I et al (2016) The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scand J Gastroenterol 51:1407–1415. https://doi.org/10.1080/00365521.2016.1216587

    Article  CAS  PubMed  Google Scholar 

  38. Sankarasubramanian J, Ahmad R, Avuthu N et al (2020) Gut microbiota and metabolic specificity in ulcerative colitis and Crohn’s disease. Front Med. https://doi.org/10.3389/fmed.2020.606298

    Article  Google Scholar 

  39. Willing BP, Dicksved J, Halfvarson J et al (2010) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139:1844-1854.e1. https://doi.org/10.1053/j.gastro.2010.08.049

    Article  PubMed  Google Scholar 

  40. Gibson PR (2017) Use of the low-FODMAP diet in inflammatory bowel disease. J Gastroenterol Hepatol 32:40–42. https://doi.org/10.1111/jgh.13695

    Article  CAS  PubMed  Google Scholar 

  41. Hsieh M-S, Hsu W-H, Wang J-W et al (2019) Nutritional and dietary strategy in the clinical care of inflammatory bowel disease. J Formos Med Assoc S0929–S6646(19):30468–30471. https://doi.org/10.1016/j.jfma.2019.09.005

    Article  CAS  Google Scholar 

  42. Raghu Subramanian C, Triadafilopoulos G (2016) Care of inflammatory bowel disease patients in remission. Gastroenterol Rep 4:261–271. https://doi.org/10.1093/gastro/gow032

    Article  Google Scholar 

  43. Starz E, Wzorek K, Folwarski M et al (2021) The modification of the gut microbiota via selected specific diets in patients with Crohn’s disease. Nutrients. https://doi.org/10.3390/nu13072125

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kakodkar S, Farooqui AJ, Mikolaitis SL, Mutlu EA (2015) The specific carbohydrate diet for inflammatory bowel disease: a case series. J Acad Nutr Diet 115:1226–1232. https://doi.org/10.1016/j.jand.2015.04.016

    Article  PubMed  Google Scholar 

  45. Adamji M, Day AS (2019) An overview of the role of exclusive enteral nutrition for complicated Crohn’s disease. Intest Res 17:171–176. https://doi.org/10.5217/ir.2018.00079

    Article  PubMed  Google Scholar 

  46. Niland B, Cash BD (2018) Health benefits and adverse effects of a gluten-free diet in non-celiac disease patients. Gastroenterol Hepatol (N Y) 14:82–91

    Google Scholar 

  47. Olendzki BC, Silverstein TD, Persuitte GM et al (2014) An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutr J 13:5. https://doi.org/10.1186/1475-2891-13-5

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chicco F, Magrì S, Cingolani A et al (2021) Multidimensional impact of Mediterranean diet on IBD patients. Inflamm Bowel Dis 27:1–9. https://doi.org/10.1093/ibd/izaa097

    Article  PubMed  Google Scholar 

  49. Willett WC, Sacks F, Trichopoulou A et al (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61:1402S-1406S. https://doi.org/10.1093/ajcn/61.6.1402S

    Article  CAS  PubMed  Google Scholar 

  50. Marlow G, Ellett S, Ferguson IR et al (2013) Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum Genomics 7:24. https://doi.org/10.1186/1479-7364-7-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weber AT, Shah ND, Sauk J, Limketkai BN (2019) Popular diet trends for inflammatory bowel diseases: claims and evidence. Curr Treat Options Gastroenterol 17:564–576. https://doi.org/10.1007/s11938-019-00248-z

    Article  PubMed  Google Scholar 

  52. Gibson PR, Shepherd SJ (2005) Personal view: food for thought - western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Aliment Pharmacol Ther 21:1399–1409. https://doi.org/10.1111/j.1365-2036.2005.02506.x

    Article  CAS  PubMed  Google Scholar 

  53. Vandeputte D, Joossens M (2020) Effects of low and high FODMAP diets on human gastrointestinal microbiota composition in adults with intestinal diseases: a systematic review. Microorganisms 8:1638. https://doi.org/10.3390/microorganisms8111638

    Article  CAS  PubMed Central  Google Scholar 

  54. Grammatikopoulou MG, Goulis DG, Gkiouras K et al (2020) Low FODMAP diet for functional gastrointestinal symptoms in quiescent inflammatory bowel disease: a systematic review of randomized controlled trials. Nutrients 12:3648. https://doi.org/10.3390/nu12123648

    Article  CAS  PubMed Central  Google Scholar 

  55. Gibson PR, Shepherd SJ (2005) Personal view: food for thought–western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Aliment Pharmacol Ther 21:1399–1409. https://doi.org/10.1111/j.1365-2036.2005.02506.x

    Article  CAS  PubMed  Google Scholar 

  56. Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50:1–9. https://doi.org/10.1038/s12276-018-0126-x

    Article  CAS  PubMed  Google Scholar 

  57. Cox SR, Prince AC, Myers CE et al (2017) Fermentable carbohydrates [FODMAPs] exacerbate functional gastrointestinal symptoms in patients with inflammatory bowel disease: a randomised, double-blind, placebo-controlled, cross-over, re-challenge trial. J Crohns Colitis 11:1420–1429. https://doi.org/10.1093/ecco-jcc/jjx073

    Article  PubMed  Google Scholar 

  58. Nelson MDLC (2000) Lehninger principles of biochemistry, 3rd edn. Worth Publishers, New York

    Google Scholar 

  59. Ferraris RP, Choe J-Y, Patel CR (2018) Intestinal absorption of fructose. Annu Rev Nutr 38:41–67. https://doi.org/10.1146/annurev-nutr-082117-051707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beisner J, Gonzalez-Granda A, Basrai M et al (2020) Fructose-induced intestinal microbiota shift following two types of short-term high-fructose dietary phases. Nutrients 12:3444. https://doi.org/10.3390/nu12113444

    Article  CAS  PubMed Central  Google Scholar 

  61. Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x

    Article  CAS  PubMed  Google Scholar 

  62. Schirmer M, Smeekens SP, Vlamakis H et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:1125-1136.e8. https://doi.org/10.1016/j.cell.2016.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Costanzo M, Berni Canani R (2018) Lactose intolerance: common misunderstandings. Ann Nutr Metab 73(suppl 4):30–37. https://doi.org/10.1159/000493669

    Article  CAS  PubMed  Google Scholar 

  64. Brandao Gois MF, Sinha T, Spreckels JE et al (2021) Role of the gut microbiome in mediating lactose intolerance symptoms. Gut. https://doi.org/10.1136/gutjnl-2020-323911

    Article  PubMed  Google Scholar 

  65. Kato K, Ishida S, Tanaka M et al (2018) Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS ONE 13:e0206189. https://doi.org/10.1371/journal.pone.0206189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marcason W (2012) What Is the FODMAP diet? J Acad Nutr Diet 112:1696. https://doi.org/10.1016/j.jand.2012.08.005

    Article  PubMed  Google Scholar 

  67. Roberfroid MB (2005) Introducing inulin-type fructans. Br J Nutr 93:S13–S25. https://doi.org/10.1079/BJN20041350

    Article  CAS  PubMed  Google Scholar 

  68. Wilson B, Whelan K (2017) Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J Gastroenterol Hepatol 32:64–68. https://doi.org/10.1111/jgh.13700

    Article  CAS  PubMed  Google Scholar 

  69. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412. https://doi.org/10.1093/jn/125.6.1401

    Article  CAS  PubMed  Google Scholar 

  70. Krumbeck JA, Rasmussen HE, Hutkins RW et al (2018) Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6:121. https://doi.org/10.1186/s40168-018-0494-4

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu F, Li P, Chen M et al (2017) Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci Rep 7:11789. https://doi.org/10.1038/s41598-017-10722-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tandon D, Haque MM, Gote M et al (2019) A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Sci Rep 9:5473. https://doi.org/10.1038/s41598-019-41837-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Birkeland E, Gharagozlian S, Birkeland KI et al (2020) Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr 59:3325–3338. https://doi.org/10.1007/s00394-020-02282-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Iraporda C, Errea A, Romanin DE et al (2015) Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220:1161–1169. https://doi.org/10.1016/j.imbio.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  75. Schouler C, Taki A, Chouikha I et al (2020) A genomic island of an extraintestinal pathogenic Escherichia coli strain enables the metabolism of fructooligosaccharides, which improves intestinal colonization. J Bacteriol 191:388–393. https://doi.org/10.1128/JB.01052-08

    Article  CAS  Google Scholar 

  76. Mao B, Li D, Zhao J et al (2015) In vitro fermentation of fructooligosaccharides with human gut bacteria. Food Funct 6:947–954. https://doi.org/10.1039/C4FO01082E

    Article  CAS  PubMed  Google Scholar 

  77. Livesey G (1992) The energy values of dietary fibre and sugar alcohols for man. Nutr Res Rev 5:61–84. https://doi.org/10.1079/NRR19920007

    Article  CAS  PubMed  Google Scholar 

  78. Lenhart A, Chey WD (2017) A systematic review of the effects of polyols on gastrointestinal health and irritable bowel syndrome. Adv Nutr 8:587–596. https://doi.org/10.3945/an.117.015560

    Article  PubMed  PubMed Central  Google Scholar 

  79. Grembecka M (2015) Sugar alcohols—their role in the modern world of sweeteners: a review. Eur Food Res Technol 241:1–14. https://doi.org/10.1007/s00217-015-2437-7

    Article  CAS  Google Scholar 

  80. Varney J, Barrett J, Scarlata K et al (2017) FODMAPs: food composition, defining cutoff values and international application. J Gastroenterol Hepatol 32:53–61. https://doi.org/10.1111/jgh.13698

    Article  CAS  PubMed  Google Scholar 

  81. Yao CK, Tan H-L, van Langenberg DR et al (2014) Dietary sorbitol and mannitol: food content and distinct absorption patterns between healthy individuals and patients with irritable bowel syndrome. J Hum Nutr Diet 27:263–275. https://doi.org/10.1111/jhn.12144

    Article  PubMed  Google Scholar 

  82. Sato T, Kusuhara S, Yokoi W et al (2017) Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw227

    Article  PubMed  Google Scholar 

  83. Chang Y-C, Ching Y-H, Chiu C-C et al (2017) TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS ONE 12:e0180025

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lo Presti A, Zorzi F, Del Chierico F et al (2019) Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front Microbiol 10:1655. https://doi.org/10.3389/fmicb.2019.01655

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mäkeläinen HS, Mäkivuokko HA, Salminen SJ et al (2007) The effects of polydextrose and xylitol on microbial community and activity in a 4-stage colon simulator. J Food Sci 72:M153–M159. https://doi.org/10.1111/j.1750-3841.2007.00350.x

    Article  CAS  PubMed  Google Scholar 

  86. Gostner A, Blaut M, Schäffer V et al (2006) Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr 95:40–50. https://doi.org/10.1079/BJN20051589

    Article  CAS  PubMed  Google Scholar 

  87. Grimble GK, Patil DH, Silk DB (1988) Assimilation of lactitol, an “unabsorbed” disaccharide in the normal human colon. Gut 29:1666–1671. https://doi.org/10.1136/gut.29.12.1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Finney M, Smullen J, Foster HA et al (2007) Effects of low doses of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. Eur J Nutr 46:307. https://doi.org/10.1007/s00394-007-0666-7

    Article  CAS  PubMed  Google Scholar 

  89. Gearry RB, Irving PM, Barrett JS et al (2009) Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease—a pilot study. J Crohn’s Colitis 3:8–14. https://doi.org/10.1016/j.crohns.2008.09.004

    Article  Google Scholar 

  90. Prince AC, Myers CE, Joyce T et al (2016) Fermentable carbohydrate restriction (low FODMAP diet) in clinical practice improves functional gastrointestinal symptoms in patients with inflammatory bowel disease. Inflamm Bowel Dis 22:1129–1136. https://doi.org/10.1097/MIB.0000000000000708

    Article  PubMed  Google Scholar 

  91. Cohen AB, Lee D, Long MD et al (2013) Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease. Dig Dis Sci 58:1322–1328. https://doi.org/10.1007/s10620-012-2373-3

    Article  CAS  PubMed  Google Scholar 

  92. Barbalho SM, de Goulart R, de Aranão ALC, de Oliveira PGC (2018) Inflammatory bowel diseases and fermentable oligosaccharides, disaccharides, monosaccharides, and polyols: an overview. J Med Food 21:633–640. https://doi.org/10.1089/jmf.2017.0120

    Article  CAS  PubMed  Google Scholar 

  93. Gibson PR (2011) Food intolerance in functional bowel disorders. J Gastroenterol Hepatol 26(Suppl 3):128–131. https://doi.org/10.1111/j.1440-1746.2011.06650.x

    Article  PubMed  Google Scholar 

  94. Halmos EP (2016) A low FODMAP diet in patients with Crohn’s disease. J Gastroenterol Hepatol 31(Suppl 1):14–15. https://doi.org/10.1111/jgh.13349

    Article  PubMed  Google Scholar 

  95. Gibson PR, Shepherd SJ (2010) Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach. J Gastroenterol Hepatol 25:252–258. https://doi.org/10.1111/j.1440-1746.2009.06149.x

    Article  PubMed  Google Scholar 

  96. Pedersen N, Ankersen DV, Felding M et al (2017) Low-FODMAP diet reduces irritable bowel symptoms in patients with inflammatory bowel disease. World J Gastroenterol 23:3356–3366. https://doi.org/10.3748/wjg.v23.i18.3356

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bodini G, Zanella C, Crespi M et al (2019) A randomized, 6-week trial of a low FODMAP diet in patients with inflammatory bowel disease. Nutrition 67–68:110542. https://doi.org/10.1016/j.nut.2019.06.023

    Article  CAS  PubMed  Google Scholar 

  98. Maagaard L, Ankersen DV, Végh Z et al (2016) Follow-up of patients with functional bowel symptoms treated with a low FODMAP diet. World J Gastroenterol 22:4009–4019. https://doi.org/10.3748/wjg.v22.i15.4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Croagh C, Shepherd SJ, Berryman M et al (2007) Pilot study on the effect of reducing dietary FODMAP intake on bowel function in patients without a colon. Inflamm Bowel Dis 13:1522–1528. https://doi.org/10.1002/ibd.20249

    Article  PubMed  Google Scholar 

  100. Staudacher HM, Irving PM, Lomer MCE, Whelan K (2014) Mechanisms and efficacy of dietary FODMAP restriction in IBS. Nat Rev Gastroenterol Hepatol 11:256–266. https://doi.org/10.1038/nrgastro.2013.259

    Article  CAS  PubMed  Google Scholar 

  101. Zhan Y, Zhan Y-A, Dai S-X (2018) Is a low FODMAP diet beneficial for patients with inflammatory bowel disease? A meta-analysis and systematic review. Clin Nutr 37:123–129. https://doi.org/10.1016/j.clnu.2017.05.019

    Article  PubMed  Google Scholar 

  102. Damas OM, Garces L, Abreu MT (2019) Diet as adjunctive treatment for inflammatory bowel disease: review and update of the latest literature. Curr Treat Options Gastroenterol 17:313–325. https://doi.org/10.1007/s11938-019-00231-8

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kakodkar S, Mutlu EA (2017) Diet as a therapeutic option for adult inflammatory bowel disease. Gastroenterol Clin North Am 46:745–767. https://doi.org/10.1016/j.gtc.2017.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  104. Stein AC, Gaetano JN, Jacobs J et al (2016) Northern latitude but not season is associated with increased rates of hospitalizations related to inflammatory bowel disease: results of a multi-year analysis of a national cohort. PLoS ONE 11:e0161523. https://doi.org/10.1371/journal.pone.0161523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bishehsari F, Voigt RM, Keshavarzian A (2020) Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol 16:731–739. https://doi.org/10.1038/s41574-020-00427-4

    Article  PubMed  PubMed Central  Google Scholar 

  106. Siva S, Rubin DT, Gulotta G et al (2017) Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm Bowel Dis 23:152–157. https://doi.org/10.1097/MIB.0000000000000989

    Article  PubMed  Google Scholar 

  107. Gröber U, Reichrath J, Holick MF (2015) Live longer with vitamin D? Nutrients 7:1871–1880. https://doi.org/10.3390/nu7031871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. EFSA Panel on Dietetic Products, Nutrition and Allergies (2014) Scientific opinion on dietary reference values for zinc. EFSA J 12:3844. https://doi.org/10.2903/j.efsa.2014.3844

    Article  CAS  Google Scholar 

  109. Cox SR, Lindsay JO, Fromentin S et al (2020) Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158:176-188.e7. https://doi.org/10.1053/j.gastro.2019.09.024

    Article  CAS  PubMed  Google Scholar 

  110. Marsh A, Eslick EM, Eslick GD (2016) Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur J Nutr 55:897–906. https://doi.org/10.1007/s00394-015-0922-1

    Article  CAS  PubMed  Google Scholar 

  111. Gu P, Feagins LA (2020) Dining with inflammatory bowel disease: a review of the literature on diet in the pathogenesis and management of IBD. Inflamm Bowel Dis 26:181–191. https://doi.org/10.1093/ibd/izz268

    Article  PubMed  Google Scholar 

  112. Andersen V, Chan S, Luben R et al (2018) Fibre intake and the development of inflammatory bowel disease: a European prospective multi-centre cohort study (EPIC-IBD). J Crohn’s Colitis. https://doi.org/10.1093/ecco-jcc/jjx136

    Article  Google Scholar 

  113. Halmos EP, Christophersen CT, Bird AR et al (2016) Consistent prebiotic effect on gut microbiota with altered FODMAP intake in patients with Crohn’s disease: a randomised, controlled cross-over trial of well-defined diets. Clin Transl Gastroenterol 7:164. https://doi.org/10.1038/ctg.2016.22

    Article  CAS  Google Scholar 

  114. Nishida A, Inoue R, Inatomi O et al (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11:1–10. https://doi.org/10.1007/s12328-017-0813-5

    Article  PubMed  Google Scholar 

  115. Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci 105:16731–16736. https://doi.org/10.1073/pnas.0804812105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yao CK, Muir JG, Gibson PR (2016) Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther 43:181–196. https://doi.org/10.1111/apt.13456

    Article  CAS  PubMed  Google Scholar 

  117. Diether NE, Willing BP (2019) Microbial fermentation of dietary protein: an important factor in dietmicrobehost interaction. Microorganisms 7:19. https://doi.org/10.3390/microorganisms7010019

    Article  CAS  PubMed Central  Google Scholar 

  118. Hill P, Muir JG, Gibson PR (2017) Controversies and recent developments of the low-FODMAP diet. Gastroenterol Hepatol 13:36–45

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr Allison Byrne for the English revision of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CS, MM, ASS; original draft preparation: CS, MM, ASS; review and editing: CS, MM, ASS.

Corresponding author

Correspondence to Ana S. Sousa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simões, C.D., Maganinho, M. & Sousa, A.S. FODMAPs, inflammatory bowel disease and gut microbiota: updated overview on the current evidence. Eur J Nutr 61, 1187–1198 (2022). https://doi.org/10.1007/s00394-021-02755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02755-1

Keywords

Navigation