Skip to main content

Advertisement

Log in

Associations of dietary, lifestyle, other participant characteristics, and oxidative balance scores with plasma F2-isoprostanes concentrations in a pooled cross-sectional study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Plasma F2-isoprostanes (FiP) concentration, a reliably measured, valid, systemic oxidative stress biomarker, has been associated with multiple health-related outcomes; however, associations of most individual dietary and lifestyle exposures with FiP are unclear, and there is no reported oxidative balance score (OBS) comprising multiple dietary and/or lifestyle components weighted by their associations with FiP.

Methods

To investigate cross-sectional associations of dietary and lifestyle characteristics with plasma FiP concentrations, we used multivariable general linear models to compare adjusted mean FiP concentrations across categories of dietary nutrient and whole-food intakes and lifestyle characteristics in two pooled cross-sectional studies (n = 386). We also developed equal-weight and weighted OBS (nutrient- and foods-based dietary OBS, lifestyle OBS, and total OBS), and compared adjusted mean FiP concentrations across OBS tertiles.

Results

Among men and women combined, adjusted mean FiP concentrations were statistically significantly, proportionately 28.1% higher among those who were obese relative to those who were normal weight; among those in the highest relative to the lowest total nutrient intake tertiles, FiP concentrations were statistically significantly lower by 9.8% for carotenes, 13.6% for lutein/zeaxanthin, 10.9% for vitamin C, 12.2% for vitamin E, 11.5% for glucosinolates, and 5% for calcium. Of the various OBS, the weighted OBS that combined total nutrient intakes and lifestyle exposures was most strongly associated with FiP concentrations: among those in the highest relative to the lowest total OBS, mean FiP concentrations were statistically significantly 29.7% lower (P < 0.001).

Conclusion

Multiple dietary and lifestyle characteristics, individually, and especially collectively, may contribute to systemic oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Data from this study are available upon application to the corresponding author.

Code availability

The code supporting this current study is available from the corresponding author upon request.

References

  1. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol Transl Integr 82:291–295

    Article  CAS  Google Scholar 

  2. Storz G, Imlayt JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  3. Sies H (2000) What is oxidative stress? Oxidative stress and vascular disease. Springer, New York, pp 1–8

    Google Scholar 

  4. Schottker B, Brenner H, Jansen EH et al (2015) Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data. BMC Med 13:300. https://doi.org/10.1186/s12916-015-0537-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salminen A, Ojala J, Kaarniranta K et al (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69:2999–3013. https://doi.org/10.1007/s00018-012-0962-0

    Article  CAS  PubMed  Google Scholar 

  6. Schottker B, Saum KU, Jansen EH et al (2015) Oxidative stress markers and all-cause mortality at older age: a population-based cohort study. J Gerontol A Biol Sci Med Sci 70:518–524. https://doi.org/10.1093/gerona/glu111

    Article  CAS  PubMed  Google Scholar 

  7. Montuschi P, Barnes PJ, Roberts LJ 2nd (2004) Isoprostanes: markers and mediators of oxidative stress. Faseb j 18:1791–1800. https://doi.org/10.1096/fj.04-2330rev

    Article  CAS  PubMed  Google Scholar 

  8. Milne GL, Musiek ES, Morrow JD (2005) F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers 10(Suppl 1):S10-23. https://doi.org/10.1080/13547500500216546

    Article  CAS  PubMed  Google Scholar 

  9. Liu T, Stern A, Roberts LJ et al (1999) The isoprostanes: novel prostaglandin-like products of the free radical-catalyzed peroxidation of arachidonic acid. J Biomed Sci 6:226–235. https://doi.org/10.1007/bf02253564

    Article  CAS  PubMed  Google Scholar 

  10. Morrow JD, Roberts LJ (1997) The isoprostanes: unique bioactive products of lipid peroxidation. Prog Lipid Res 36:1–21. https://doi.org/10.1016/s0163-7827(97)00001-5

    Article  CAS  PubMed  Google Scholar 

  11. Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513. https://doi.org/10.1016/s0891-5849(99)00264-6

    Article  CAS  PubMed  Google Scholar 

  12. Morrow JD, Roberts LJ 2nd (1999) Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 300:3–12. https://doi.org/10.1016/s0076-6879(99)00106-8

    Article  CAS  PubMed  Google Scholar 

  13. Morrow JD, Zackert WE, Yang JP et al (1999) Quantification of the major urinary metabolite of 15–F2t-isoprostane (8-iso-PGF2alpha) by a stable isotope dilution mass spectrometric assay. Anal Biochem 269:326–331. https://doi.org/10.1006/abio.1999.4008

    Article  CAS  PubMed  Google Scholar 

  14. Morrow JD (2000) The isoprostanes: their quantification as an index of oxidant stress status in vivo. Drug Metab Rev 32:377–385. https://doi.org/10.1081/dmr-100102340

    Article  CAS  PubMed  Google Scholar 

  15. Block G, Dietrich M, Norkus EP et al (2002) Factors associated with oxidative stress in human populations. Am J Epidemiol 156:274–285. https://doi.org/10.1093/aje/kwf029

    Article  PubMed  Google Scholar 

  16. Keaney JF Jr, Larson MG, Vasan RS et al (2003) Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 23:434–439. https://doi.org/10.1161/01.Atv.0000058402.34138.11

    Article  CAS  PubMed  Google Scholar 

  17. Helmersson J, Larsson A, Vessby B et al (2005) Active smoking and a history of smoking are associated with enhanced prostaglandin F(2alpha), interleukin-6 and F2-isoprostane formation in elderly men. Atherosclerosis 181:201–207. https://doi.org/10.1016/j.atherosclerosis.2004.11.026

    Article  CAS  PubMed  Google Scholar 

  18. Tomey KM, Sowers MR, Li X et al (2007) Dietary fat subgroups, zinc, and vegetable components are related to urine F2a-isoprostane concentration, a measure of oxidative stress, in midlife women. J Nutr 137:2412–2419. https://doi.org/10.1093/jn/137.11.2412

    Article  CAS  PubMed  Google Scholar 

  19. Basu S, Helmersson J, Jarosinska D et al (2009) Regulatory factors of basal F(2)-isoprostane formation: population, age, gender and smoking habits in humans. Free Radic Res 43:85–91. https://doi.org/10.1080/10715760802610851

    Article  CAS  PubMed  Google Scholar 

  20. Sakano N, Takahashi N, Wang DH et al (2009) Plasma 3-nitrotyrosine, urinary 8-isoprostane and 8-OHdG among healthy Japanese people. Free Radic Res 43:183–192. https://doi.org/10.1080/10715760802663124

    Article  CAS  PubMed  Google Scholar 

  21. Sakano N, Wang DH, Takahashi N et al (2009) Oxidative stress biomarkers and lifestyles in Japanese healthy people. J Clin Biochem Nutr 44:185–195. https://doi.org/10.3164/jcbn.08-252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vetrani C, Costabile G, Di Marino L et al (2013) Nutrition and oxidative stress: a systematic review of human studies. Int J Food Sci Nutr 64:312–326. https://doi.org/10.3109/09637486.2012.738651

    Article  CAS  PubMed  Google Scholar 

  23. Boyapati SM, Bostick RM, McGlynn KA et al (2003) Calcium, vitamin D, and risk for colorectal adenoma: dependency on vitamin D receptor BsmI polymorphism and nonsteroidal anti-inflammatory drug use? Cancer Epidemiol Biomarkers Prev 12:631–637

    CAS  PubMed  Google Scholar 

  24. Daniel CR, Bostick RM, Flanders WD et al (2009) TGF-alpha expression as a potential biomarker of risk within the normal-appearing colorectal mucosa of patients with and without incident sporadic adenoma. Cancer Epidemiol Biomarkers Prev 18:65–73. https://doi.org/10.1158/1055-9965.Epi-08-0732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. MacIntosh DL, Williams PL, Hunter DJ et al (1997) Evaluation of a food frequency questionnaire-food composition approach for estimating dietary intake of inorganic arsenic and methylmercury. Cancer Epidemiol Biomarkers Prev 6:1043–1050

    CAS  PubMed  Google Scholar 

  26. Willett WC, Sampson L, Stampfer MJ et al (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122:51–65. https://doi.org/10.1093/oxfordjournals.aje.a114086

    Article  CAS  PubMed  Google Scholar 

  27. Paffenbarger RS Jr, Blair SN, Lee IM et al (1993) Measurement of physical activity to assess health effects in free-living populations. Med Sci Sports Exerc 25:60–70. https://doi.org/10.1249/00005768-199301000-00010

    Article  PubMed  Google Scholar 

  28. Dash C, Bostick RM, Goodman M et al (2015) Oxidative balance scores and risk of incident colorectal cancer in a US prospective cohort study. Am J Epidemiol 181:584–594. https://doi.org/10.1093/aje/kwu318

    Article  PubMed  Google Scholar 

  29. Dash C, Goodman M, Flanders WD et al (2013) Using pathway-specific comprehensive exposure scores in epidemiology: application to oxidative balance in a pooled case-control study of incident, sporadic colorectal adenomas. Am J Epidemiol 178:610–624. https://doi.org/10.1093/aje/kwt007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Morrow JD, Roberts LJ 2nd (1994) Mass spectrometry of prostanoids: F2-isoprostanes produced by non-cyclooxygenase free radical-catalyzed mechanism. Methods Enzymol 233:163–174. https://doi.org/10.1016/s0076-6879(94)33019-0

    Article  CAS  PubMed  Google Scholar 

  31. Bieri JG, Brown ED, Smith JC Jr (1985) Determination of individual carotenoids in human plasma by high performance liquid chromatography. J Liq Chromatogr 8:473–484

    Article  CAS  Google Scholar 

  32. Craft NE, Brown ED, Smith JC Jr (1988) Effects of storage and handling conditions on concentrations of individual carotenoids, retinol, and tocopherol in plasma. Clin Chem 34:44–48

    Article  CAS  PubMed  Google Scholar 

  33. Gross MD, Prouty CB, Jacobs DR Jr (1995) Stability of carotenoids and alpha-tocopherol during blood collection and processing procedures. Clin Chem 41:943–944

    Article  CAS  PubMed  Google Scholar 

  34. Lee D-H, Gross MD, Jacobs DR Jr (2004) Association of serum carotenoids and tocopherols with γ-glutamyltransferase: the Cardiovascular Risk Development in Young Adults (CARDIA) study. Clin Chem 50:582–588

    Article  CAS  PubMed  Google Scholar 

  35. Byrd DA, Judd SE, Flanders WD et al (2019) Development and Validation of Novel Dietary and Lifestyle Inflammation Scores. J Nutr 149:2206–2218. https://doi.org/10.1093/jn/nxz165

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mao Z, Prizment AE, Lazovich D et al (2020) Dietary and Lifestyle Oxidative Balance Scores and Incident Colorectal Cancer Risk among Older Women; the Iowa Women’s Health Study. Nutr Cancer. https://doi.org/10.1080/01635581.2020.1821904

    Article  PubMed  Google Scholar 

  37. Reuter S, Gupta SC, Chaturvedi MM et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burton G, Ingold K (1989) Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci 570:7–22

    Article  CAS  PubMed  Google Scholar 

  39. Kojo S (2004) Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem 11:1041–1064. https://doi.org/10.2174/0929867043455567

    Article  CAS  PubMed  Google Scholar 

  40. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127. https://doi.org/10.1007/s00018-007-6484-5

    Article  CAS  PubMed  Google Scholar 

  41. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216. https://doi.org/10.1016/j.phrs.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  42. Anderson C, Milne GL, Sandler DP et al (2016) Oxidative stress in relation to diet and physical activity among premenopausal women. Br J Nutr 116:1416–1424. https://doi.org/10.1017/s0007114516003226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thomson CA, Stendell-Hollis NR, Rock CL et al (2007) Plasma and dietary carotenoids are associated with reduced oxidative stress in women previously treated for breast cancer. Cancer Epidemiol Biomarkers Prev 16:2008–2015. https://doi.org/10.1158/1055-9965.Epi-07-0350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cocate PG, Natali AJ, Alfenas RC et al (2015) Carotenoid consumption is related to lower lipid oxidation and DNA damage in middle-aged men. Br J Nutr 114:257–264. https://doi.org/10.1017/s0007114515001622

    Article  CAS  PubMed  Google Scholar 

  45. Helmersson J, Arnlöv J, Larsson A et al (2009) Low dietary intake of beta-carotene, alpha-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort. Br J Nutr 101:1775–1782. https://doi.org/10.1017/s0007114508147377

    Article  CAS  PubMed  Google Scholar 

  46. Thompson HJ, Heimendinger J, Gillette C et al (2005) In vivo investigation of changes in biomarkers of oxidative stress induced by plant food rich diets. J Agric Food Chem 53:6126–6132. https://doi.org/10.1021/jf050493x

    Article  CAS  PubMed  Google Scholar 

  47. Thompson HJ, Heimendinger J, Sedlacek S et al (2005) 8-Isoprostane F2alpha excretion is reduced in women by increased vegetable and fruit intake. Am J Clin Nutr 82:768–776. https://doi.org/10.1093/ajcn/82.4.768

    Article  CAS  PubMed  Google Scholar 

  48. Cocate PG, Natali AJ, Oliveira A et al (2014) Fruit and vegetable intake and related nutrients are associated with oxidative stress markers in middle-aged men. Nutrition 30:660–665. https://doi.org/10.1016/j.nut.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  49. Thompson HJ, Heimendinger J, Haegele A et al (1999) Effect of increased vegetable and fruit consumption on markers of oxidative cellular damage. Carcinogenesis 20:2261–2266. https://doi.org/10.1093/carcin/20.12.2261

    Article  CAS  PubMed  Google Scholar 

  50. Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig 114:1752–1761. https://doi.org/10.1172/jci21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wagner G, Lindroos-Christensen J, Einwallner E et al (2017) HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2. Sci Rep 7:40881. https://doi.org/10.1038/srep40881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M et al (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12:3117–3132. https://doi.org/10.3390/ijms12053117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manna P, Jain SK (2015) Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord 13:423–444. https://doi.org/10.1089/met.2015.0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alkazemi D, Egeland GM, Roberts LJ 2nd et al (2012) Isoprostanes and isofurans as non-traditional risk factors for cardiovascular disease among Canadian Inuit. Free Radic Res 46:1258–1266. https://doi.org/10.3109/10715762.2012.702900

    Article  CAS  PubMed  Google Scholar 

  55. Loft S, Vistisen K, Ewertz M et al (1992) Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis 13:2241–2247. https://doi.org/10.1093/carcin/13.12.2241

    Article  CAS  PubMed  Google Scholar 

  56. Irie M, Tamae K, Iwamoto-Tanaka N et al (2005) Occupational and lifestyle factors and urinary 8-hydroxydeoxyguanosine. Cancer Sci 96:600–606. https://doi.org/10.1111/j.1349-7006.2005.00083.x

    Article  CAS  PubMed  Google Scholar 

  57. Tamae K, Kawai K, Yamasaki S et al (2009) Effect of age, smoking and other lifestyle factors on urinary 7-methylguanine and 8-hydroxydeoxyguanosine. Cancer Sci 100:715–721. https://doi.org/10.1111/j.1349-7006.2009.01088.x

    Article  CAS  PubMed  Google Scholar 

  58. Dorjgochoo T, Gao YT, Chow WH et al (2011) Obesity, age, and oxidative stress in middle-aged and older women. Antioxid Redox Signal 14:2453–2460. https://doi.org/10.1089/ars.2010.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Black CN, Bot M, Scheffer PG et al (2016) Sociodemographic and Lifestyle Determinants of Plasma Oxidative Stress Markers 8-OHdG and F2-Isoprostanes and Associations with Metabolic Syndrome. Oxid Med Cell Longev 2016:7530820. https://doi.org/10.1155/2016/7530820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harman SM, Liang L, Tsitouras PD et al (2003) Urinary excretion of three nucleic acid oxidation adducts and isoprostane F(2)alpha measured by liquid chromatography-mass spectrometry in smokers, ex-smokers, and nonsmokers. Free Radic Biol Med 35:1301–1309. https://doi.org/10.1016/j.freeradbiomed.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  61. Duggan C, Tapsoba JD, Wang CY et al (2016) Dietary weight loss, exercise, and oxidative stress in postmenopausal women: a randomized controlled trial. Cancer Prev Res (Phila) 9:835–843. https://doi.org/10.1158/1940-6207.CAPR-16-0163

    Article  Google Scholar 

  62. Ide T, Tsutsui H, Ohashi N et al (2002) Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol 22:438–442. https://doi.org/10.1161/hq0302.104515

    Article  CAS  PubMed  Google Scholar 

  63. Schisterman EF, Gaskins AJ, Mumford SL et al (2010) Influence of endogenous reproductive hormones on F2-isoprostane levels in premenopausal women: the BioCycle Study. Am J Epidemiol 172:430–439. https://doi.org/10.1093/aje/kwq131

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sowers M, McConnell D, Jannausch ML et al (2008) Oestrogen metabolites in relation to isoprostanes as a measure of oxidative stress. Clin Endocrinol (Oxf) 68:806–813. https://doi.org/10.1111/j.1365-2265.2007.03108.x

    Article  CAS  Google Scholar 

  65. Hernandez-Ruiz A, Garcia-Villanova B, Guerra-Hernandez E et al (2019) A review of a priori defined oxidative balance scores relative to their components and impact on health outcomes. Nutrients. https://doi.org/10.3390/nu11040774

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Cancer Institute at the National Institutes of Health under Grant R01 CA66539; The Fullerton Foundation; and The Anne and Wilson P. Franklin Foundation. None of the funding agencies had any role in the conduct of the study; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RMB and ZM were primarily responsible for the project conception and design. RMB collected the data. ZM and RMB were primarily responsible for analyzing and interpreting the data and writing the manuscript. RMB supervised the analysis project and manuscript writing. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Roberd M. Bostick.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This paper was produced based on secondary analyses of de-identified data from two previously closed studies. The original studies were approved by the respective Institutional Review Boards of the corresponding institutions (Wake Forest University School of Medicine and the University of South Carolina), and all participants were willing to participate and able to understand and provide informed consent.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Bostick, R.M. Associations of dietary, lifestyle, other participant characteristics, and oxidative balance scores with plasma F2-isoprostanes concentrations in a pooled cross-sectional study. Eur J Nutr 61, 1541–1560 (2022). https://doi.org/10.1007/s00394-021-02754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02754-2

Keywords

Navigation