Skip to main content
Log in

Cardiovascular disease risk reduction with wolfberry consumption: a systematic review and meta-analysis of randomized controlled trials

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Wolfberry is rich in bioactive compounds which may lower cardiovascular disease risk. This meta-analysis aimed to systematically evaluate the effects of wolfberry-based randomized controlled trials (RCTs) on overall cardiovascular health.

Methods

Four online databases (PubMed, CINAHL Plus, Medline and Cochrane Library) were searched to shortlist relevant RCTs. Outcomes of interests included blood lipids and lipoproteins, blood pressure, biomarkers of oxidative stress, inflammation and other cardiovascular health-related indicators. Random-effects models were used to provide a weighted mean difference (WMD) and/or Hedges’ g for quantitative synthesis. This was coupled with subcategory analyses which stratified RCTs according to the form in which wolfberry was administered (whole wolfberry versus wolfberry extract).

Results

From the 785 articles identified, 10 were selected for meta-analysis. Compared to the control, groups which consumed wolfberry showed a reduction in blood triglycerides [WMDpooled (95% confidence interval): − 0.14 (− 0.19, − 0.09) mmol/L] and increased blood high-density lipoprotein cholesterol [WMDpooled: 0.06 (0.02, 0.09) mmol/L]. Notably, effects for both triglycerides [WMDwhole: − 0.14 (− 0.19, − 0.09) mmol/L; WMDextract: − 0.07 (− 0.30, 0.16) mmol/L] and high-density lipoprotein cholesterol [WMDwhole: 0.06 (0.02, 0.09) mmol/L; WMDextract: 0.05 (− 0.02, 0.13) mmol/L] were more prominent after whole wolfberry interventions. Additionally, blood malondialdehyde equivalents were also significantly decreased in wolfberry consuming groups [Hedges’ gpooled: − 1.45 (− 2.75, − 0.16)]. No changes were observed for the other lipids and lipoproteins as well as blood pressure.

Conclusions

Wolfberry consumption is effective in improving blood lipids and lipoproteins profile and lowering oxidative stress. This supports the incorporation of wolfberry, particularly as whole fruits, into dietary patterns targeted at improving cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data from this research will be made available upon request.

References

  1. Arnett DK, Blumenthal RS, Albert MA et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 140:e596–e646

    PubMed  PubMed Central  Google Scholar 

  2. Zanchet MZS, Nardi GM, Bratti LOS et al (2017) Lycium barbarum reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome. Oxid Med Cell Longev 2017:9763210

    Google Scholar 

  3. Cheng J, Zhou ZW, Sheng HP et al (2015) An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des Dev Ther 9:33–78

    CAS  Google Scholar 

  4. Potterat O (2010) Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 76:7–19

    Article  CAS  PubMed  Google Scholar 

  5. Amagase H, Farnsworth NR (2011) A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (goji). Food Res Int 44:1702–1717

    Article  CAS  Google Scholar 

  6. Konarska A (2018) Microstructural and histochemical characteristics of Lycium barbarum L. fruits used in folk herbal medicine and as functional food. Protoplasma 255:1839–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu Y, Guo S, Zhang F et al (2019) Comparison of functional components and antioxidant activity of Lycium barbarum L. fruits from different regions in China. Molecules 14:2228

    Article  Google Scholar 

  8. Hempel J, Schädle CN, Sprenger J et al (2016) Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem 218:525–533

    Article  PubMed  Google Scholar 

  9. Bucheli P, Gao Q, Redgwell R et al (2011) Biomolecular and clinical aspects of Chinese wolfberry. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press/Taylor & Francis, California, pp 290–308

    Google Scholar 

  10. Wang CC, Chang SC, Inbaraj BS, Chen BH (2010) Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem 120:184–192

    Article  CAS  Google Scholar 

  11. Pai PG, Umma HP, Ullal S et al (2013) Evaluation of hypolipidemic effects of Lycium barbarum (goji berry) in a murine model. J Nat Remedies 13:4–8

    Google Scholar 

  12. Luo Q, Cai Y, Yan J et al (2004) Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci 76:137–149

    Article  CAS  PubMed  Google Scholar 

  13. Xin Y-F, Zhou G-L, Deng Z-Y et al (2007) Protective effect of Lycium barbarum on doxorubicin-induced cardiotoxicity. Phytother Res 21:1020–1024

    Article  CAS  PubMed  Google Scholar 

  14. Feng Z, Jia H, Li X et al (2010) A milk-based wolfberry preparation prevents prenatal stress-induced cognitive impairment of offspring rats, and inhibits oxidative damage and mitochondrial dysfunction in vitro. Neurochem Res 35:702–711

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Z, Luo Y, Li G et al (2013) Thoracic aorta vasoreactivity in rats under exhaustive exercise: effects of Lycium barbarum polysaccharides supplementation. J Int Soc Sports Nutr 10:47–53

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu H, Guo H, Zhao R (2006) Effect of Lycium barbarum polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi 126:365–371

    Article  CAS  PubMed  Google Scholar 

  17. Guo X, Li Z, Cai H, Li D (2017) The effects of Lycium barbarum L. (L. barbarum) on cardiometabolic risk factors: a meta-analysis of randomized controlled trials. Food Funct 8:1741–1748

    Article  CAS  PubMed  Google Scholar 

  18. Benzie IFF, Chung WY, Wang J et al (2006) Enhanced bioavailability of zeaxanthin in a milk-based formulation of wolfberry (gou qi zi; Fructus barbarum L.). Br J Nutr 96:154–160

    Article  CAS  PubMed  Google Scholar 

  19. Toh DWK, Xia X, Sutanto CN et al (2021) Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): a randomized controlled trial. Am J Clin Nutr 114:80–89

    Article  PubMed  Google Scholar 

  20. Ma JJ, Zhang WJ, Yang Y, Yuan XG (2019) Effects of Lycium barbarum polysaccharide on the immune function and antioxidant of taekwondo athletes. Chin J Appl Physiol 35:513–516

    Google Scholar 

  21. Singh U, Jialal I (2006) Oxidative stress and atherosclerosis. Pathophysiology 13:129–142

    Article  CAS  PubMed  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J et al (2010) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg 8:336–341

    Article  PubMed  Google Scholar 

  23. Higgins JP, Deeks JJ, Altman DG (2008) Special topics in statistics. In: Higgins JP, Green S (eds) Cochrane handbook for systematic reviews of interventions: cochrane book series, 5.0.1. Wiley-Blackwell, Chichester, pp 481–530

    Chapter  Google Scholar 

  24. Amagase H, Sun B, Borek C (2009) Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr Res 29:19–25

    Article  CAS  PubMed  Google Scholar 

  25. Toh DWK, Lee WY, Zhou H et al (2021) Wolfberry (Lycium barbarum) consumption with a healthy dietary pattern lowers oxidative stress in middle-aged and older adults: a randomized controlled trial. Antioxidants 10:567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee YJ, Ahn Y, Kwon O et al (2017) Dietary wolfberry extract modifies oxidative stress by controlling the expression of inflammatory mRNAs in overweight and hypercholesterolemic subjects: a randomized, double-blind, placebo-controlled trial. J Agric Food Chem 65:309–316

    Article  CAS  PubMed  Google Scholar 

  27. Higgins JP, Altman DG (2008) Assessing risk of bias in included studies. In: Higgins JP, Green S (eds) Cochrane handbook for systematic reviews of interventions: cochrane book series, 5.0.1. Wiley-Blackwell, Chichester, pp 187–242

    Chapter  Google Scholar 

  28. He J, Zhou W, Qiu Y et al (1998) A clinic study in the effect of Lycium barbarum L. on antioxidixing reaction in the patients with diabetic retinopathy. Tradit Chin Opthalmol 5:1998–2002

    Google Scholar 

  29. Cai H, Liu F, Zuo P et al (2015) Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Med Chem 11:383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vidal K, Bucheli P, Gao Q et al (2012) Immunomodulatory effects of dietary supplementation with a milk-based wolfberry formulation in healthy elderly: a randomized, double-blind, placebo-controlled trial. Rejuvenation Res 15:89–97

    Article  CAS  PubMed  Google Scholar 

  31. Bucheli P, Vidal K, Shen L et al (2011) Goji berry effects on macular characteristics and plasma antioxidant levels. Optom Vis Sci 88:257–262

    Article  PubMed  Google Scholar 

  32. Amagase H, Nance DM (2008) A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (goji) juice, GoChiTM. J Altern Complement Med 14:403–412

    Article  PubMed  Google Scholar 

  33. Amagase H, Sun B, Nance DM (2009) Immunomodulatory effects of a standardized Lycium barbarum fruit juice in Chinese older healthy human subjects. J Med Food 12:1159–1165

    Article  CAS  PubMed  Google Scholar 

  34. Yu DH, Wu JM, Niu AJ (2009) Health-promoting effect of Lycium barbarum polysaccharides and healthy qigong exercise on physiological functions in old subjects. Carbohydr Polym 75:312–316

    Article  CAS  Google Scholar 

  35. Zhao R, Li Q, Xiao B (2005) Effect of Lycium barbarum polysaccharide on the improvement of insulin resistance in NIDDM rats. Yakugaku Zasshi 125:981–988

    Article  CAS  PubMed  Google Scholar 

  36. Zhao R, Jin R, Chen Y, Han F (2015) Hypoglycemic and hypolipidemic effects of Lycium barbarum polysaccharide in diabetic rats. Chin Herb Med 7:310–315

    Article  Google Scholar 

  37. Jang H, Lee GY, Selby CP et al (2016) SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun 7:12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murillo AG, Hu S, Fernandez ML (2019) Zeaxanthin: Metabolism, properties, and antioxidant protection of eyes, heart, liver, and skin. Antioxidants 8:390–417

    Article  CAS  PubMed Central  Google Scholar 

  39. Mutharasan RK, Thaxton CS, Berry J et al (2017) HDL efflux capacity, HDL particle size, and high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: the Chicago healthy aging study. J Lipid Res 58:600–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu X, Hu S, Zhu L et al (2015) Effects of Lycium barbarum polysaccharides on oxidative stress in hyperlipidemic mice following chronic composite psychological stress intervention. Mol Med Rep 11:3445–3450

    Article  CAS  PubMed  Google Scholar 

  41. Dueland S, France D, Wang SL et al (1997) Cholesterol 7alpha-hydroxylase influences the expression of hepatic apoA-I in two inbred mouse strains displaying different susceptibilities to atherosclerosis and in hepatoma cells. J Lipid Res 38:1445–1453

    Article  CAS  PubMed  Google Scholar 

  42. Philippe D, Brahmbhatt V, Foata F et al (2012) Anti-inflammatory effects of lacto-wolfberry in a mouse model of experimental colitis. World J Gastroenterol 18:5351–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang SF, Liu X, Ding MY et al (2019) 2-O-β-D-glucopyranosyl-L-ascorbic acid, a novel vitamin C derivative from Lycium barbarum, prevents oxidative stress. Redox Biol 24:101173

    Article  PubMed  PubMed Central  Google Scholar 

  44. Miller M, Cannon CP, Murphy SA et al (2008) Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 51:724–730

    Article  CAS  PubMed  Google Scholar 

  45. Gordon DJ, Probstfield JL, Garrison RJ et al (1989) High-density lipoprotein cholesterol and cardiovascular disease: four prospective American studies. Circulation 79:8–15

    Article  CAS  PubMed  Google Scholar 

  46. Cheng CY, Chung WY, Szeto YT, Benzie IFF (2005) Fasting plasma zeaxanthin response to Fructus barbarum L. (wolfberry; kei tze) in a food-based human supplementation trial. Br J Nutr 93:123–130

    Article  CAS  PubMed  Google Scholar 

  47. Beydoun MA, Chen X, Jha K et al (2019) Carotenoids, vitamin A, and their association with the metabolic syndrome: a systematic review and meta-analysis. Nutr Rev 77:32–45

    Article  PubMed  Google Scholar 

  48. Aune D, Keum N, Giovannucci E et al (2018) Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr 108:1069–1091

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhong Y, Shahidi F, Naczk M (2013) Phytochemicals and health benefits of goji berries. In: Alasalvar C (ed) Dried fruits: phytochemicals and health effects, 1st edn. Wiley-Blackwell, New Jersey, pp 133–144

    Chapter  Google Scholar 

  50. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Xuejuan Xia and Yuanhang Yao who aided in the translation of Mandarin articles.

Funding

This research was supported by the National University of Singapore (Grant Number: R-160-000-A26-114).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows: DWKT and JEK conceptualized the study. DWKT and JHML conducted the literature search and data extraction. DWKT performed the formal analysis, validation and wrote the draft of the original manuscript under the supervision of JEK. All authors read, reviewed and edited the manuscript and approved the final manuscript submitted for publication.

Corresponding author

Correspondence to Jung Eun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, D.W.K., Low, J.H.M. & Kim, J.E. Cardiovascular disease risk reduction with wolfberry consumption: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 61, 1177–1186 (2022). https://doi.org/10.1007/s00394-021-02750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02750-6

Keywords

Navigation