Edholm OG, Adam JM, Healy MJ, Wolff HS, Goldsmith R, Best TW (1970) Food intake and energy expenditure of army recruits. Br J Nutr 24(4):1091–1107. https://doi.org/10.1079/bjn19700112
CAS
Article
PubMed
Google Scholar
Casanova N, Beaulieu K, Finlayson G, Hopkins M (2019) Metabolic adaptations during negative energy balance and their potential impact on appetite and food intake. Proc Nutr Soc 78(3):279–289. https://doi.org/10.1017/s0029665118002811
Article
PubMed
Google Scholar
Melby CL, Paris HL, Foright RM, Peth J (2017) Attenuating the biologic drive for weight regain following weight loss: must what goes down always go back up? Nutrients. https://doi.org/10.3390/nu9050468
Article
PubMed
PubMed Central
Google Scholar
Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Robertson C, Sharma P, Fraser C, MacLennan G (2017) Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ. https://doi.org/10.1136/bmj.j4849
Article
PubMed
PubMed Central
Google Scholar
Felix HC, West DS (2013) Effectiveness of weight loss interventions for obese older adults. Am J Health Promot AJHP 27(3):191–199. https://doi.org/10.4278/ajhp.110617-LIT-259
Article
PubMed
Google Scholar
Gurevich-Panigrahi T, Panigrahi S, Wiechec E, Los M (2009) Obesity: pathophysiology and clinical management. Curr Med Chem 16(4):506–521. https://doi.org/10.2174/092986709787315568
CAS
Article
PubMed
Google Scholar
Thomas DM, Bouchard C, Church T, Slentz C, Kraus WE, Redman LM, Martin CK, Silva AM, Vossen M, Westerterp K, Heymsfield SB (2012) Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes Rev 13(10):835–847. https://doi.org/10.1111/j.1467-789X.2012.01012.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Levine JA, Eberhardt NL, Jensen MD (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283(5399):212–214
CAS
Article
Google Scholar
Hollstein T, Basolo A, Ando T, Krakoff J, Piaggi P (2021) Reduced adaptive thermogenesis during acute protein-imbalanced overfeeding is a metabolic hallmark of the human thrifty phenotype. Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqab209
Article
PubMed
Google Scholar
Gulick A (1995) A study of weight regulation in the adult human body during over-nutrition. Obes Res 3(5):501–512. https://doi.org/10.1002/j.1550-8528.1995.tb00182.x
CAS
Article
PubMed
Google Scholar
Neumann RO (1902) Experimentelle beiträge zur lehre von dem täglichen nahrungsbedarf des menschen unter besonderer berück-sichtigung der notwendigen eiweissmenge
Rothwell NJ, Stock MJ (1983) Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond) 64(1):19–23. https://doi.org/10.1042/cs0640019
CAS
Article
Google Scholar
Hervey GR, Tobin G (1983) Luxuskonsumption, diet-induced thermogenesis and brown fat: a critical review. Clin Sci (Lond) 64(1):7–18. https://doi.org/10.1042/cs0640007
CAS
Article
Google Scholar
Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332(10):621–628. https://doi.org/10.1056/nejm199503093321001
CAS
Article
Google Scholar
Major GC, Doucet E, Trayhurn P, Astrup A, Tremblay A (2007) Clinical significance of adaptive thermogenesis. Int J Obes (Lond) 31(2):204–212. https://doi.org/10.1038/sj.ijo.0803523
CAS
Article
Google Scholar
Dulloo AG, Jacquet J, Montani JP, Schutz Y (2012) Adaptive thermogenesis in human body weight regulation: more of a concept than a measurable entity? Obes Rev 13(Suppl 2):105–121. https://doi.org/10.1111/j.1467-789X.2012.01041.x
Article
PubMed
Google Scholar
Heinitz S, Hollstein T, Ando T, Walter M, Basolo A, Krakoff J, Votruba SB, Piaggi P (2020) Early adaptive thermogenesis is a determinant of weight loss after six weeks of caloric restriction in overweight subjects. Metabolism 110:154303. https://doi.org/10.1016/j.metabol.2020.154303
CAS
Article
PubMed
PubMed Central
Google Scholar
Gomez-Arbelaez D, Crujeiras AB, Castro AI, Martinez-Olmos MA, Canton A, Ordoñez-Mayan L, Sajoux I, Galban C, Bellido D, Casanueva FF (2018) Resting metabolic rate of obese patients under very low calorie ketogenic diet. Nutr Metab (Lond) 15:18. https://doi.org/10.1186/s12986-018-0249-z
CAS
Article
Google Scholar
Browning MG, Rabl C, Campos GM (2017) Blunting of adaptive thermogenesis as a potential additional mechanism to promote weight loss after gastric bypass. Surg Obes Relat Dis 13(4):669–673. https://doi.org/10.1016/j.soard.2016.11.016
Article
PubMed
Google Scholar
Marlatt KL, Redman LM, Burton JH, Martin CK, Ravussin E (2017) Persistence of weight loss and acquired behaviors 2 year after stopping a 2-year calorie restriction intervention. Am J Clin Nutr 105(4):928–935. https://doi.org/10.3945/ajcn.116.146837
CAS
Article
PubMed
PubMed Central
Google Scholar
Novaes Ravelli M, Schoeller DA, Crisp AH, Shriver T, Ferriolli E, Ducatti C, Marques de Oliveira MR (2019) Influence of energy balance on the rate of weight loss throughout one year of Roux-en-Y gastric bypass: a doubly labeled water study. Obes Surg 29(10):3299–3308. https://doi.org/10.1007/s11695-019-03989-z
Article
PubMed
Google Scholar
Wolfe BM, Schoeller DA, McCrady-Spitzer SK, Thomas DM, Sorenson CE, Levine JA (2018) Resting metabolic rate, total daily energy expenditure, and metabolic adaptation 6 months and 24 months after bariatric surgery. Obesity (Silver Spring) 26(5):862–868. https://doi.org/10.1002/oby.22138
Article
Google Scholar
Martins C, Gower BA, Hill JO, Hunter GR (2020) Metabolic adaptation is not a major barrier to weight-loss maintenance. Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqaa086
Article
PubMed
PubMed Central
Google Scholar
Martins C, Roekenes J, Salamati S, Gower BA, Hunter GR (2020) Metabolic adaptation is an illusion, only present when participants are in negative energy balance. Am J Clin Nutr 112(5):1212–1218. https://doi.org/10.1093/ajcn/nqaa220
Article
PubMed
PubMed Central
Google Scholar
Bettini S, Bordigato E, Fabris R, Serra R, Dal Pra C, Belligoli A, Sanna M, Compagnin C, Foletto M, Prevedello L, Fioretto P, Vettor R, Busetto L (2018) Modifications of resting energy expenditure after sleeve gastrectomy. Obes Surg 28(8):2481–2486. https://doi.org/10.1007/s11695-018-3190-3
Article
PubMed
Google Scholar
Tam CS, Rigas G, Heilbronn LK, Matisan T, Probst Y, Talbot M (2016) Energy adaptations persist 2 years after sleeve gastrectomy and gastric bypass. Obes Surg 26(2):459–463. https://doi.org/10.1007/s11695-015-1972-4
Article
PubMed
Google Scholar
Carrasco F, Papapietro K, Csendes A, Salazar G, Echenique C, Lisboa C, Diaz E, Rojas J (2007) Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes Surg 17(5):608–616. https://doi.org/10.1007/s11695-007-9117-z
Article
PubMed
Google Scholar
Flatt JP (2007) Exaggerated claim about adaptive thermogenesis. Int J Obes (Lond) 31(10):1626. https://doi.org/10.1038/sj.ijo.0803641 (author reply 1627–1628)
CAS
Article
Google Scholar
Kuchnia A, Huizenga R, Frankenfield D, Matthie JR, Earthman CP (2016) Overstated metabolic adaptation after “the biggest loser” intervention. Obesity 24(10):2025–2025. https://doi.org/10.1002/oby.21638
Article
PubMed
Google Scholar
Muller MJ, Bosy-Westphal A (2013) Adaptive thermogenesis with weight loss in humans. Obesity (Silver Spring) 21(2):218–228. https://doi.org/10.1002/oby.20027
CAS
Article
Google Scholar
Byrne NM, Sainsbury A, King NA, Hills AP, Wood RE (2018) Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. Int J Obes (Lond) 42(2):129–138. https://doi.org/10.1038/ijo.2017.206
CAS
Article
Google Scholar
Silva AM, Nunes CL, Matias CN, Jesus F, Francisco R, Cardoso M, Santos I, Carraça EV, Silva MN, Sardinha LB, Martins P, Minderico CS (2020) Champ4life study protocol: a one-year randomized controlled trial of a lifestyle intervention for inactive former elite athletes with overweight/obesity. Nutrients. https://doi.org/10.3390/nu12020286
Article
PubMed
PubMed Central
Google Scholar
American College of Sports M, Riebe D, Ehrman JK, Liguori G, Magal M (2018) ACSM's guidelines for exercise testing and prescription
Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19(2):127–140. https://doi.org/10.1016/j.jocd.2016.03.003
Article
PubMed
Google Scholar
Compher C, Frankenfield D, Keim N, Roth-Yousey L (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 106(6):881–903. https://doi.org/10.1016/j.jada.2006.02.009
Article
PubMed
Google Scholar
Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109(1–2):1–9
Article
Google Scholar
Hayes M, Chustek M, Wang Z, Gallagher D, Heshka S, Spungen A, Bauman W, Heymsfield SB (2002) DXA: potential for creating a metabolic map of organ-tissue resting energy expenditure components. Obes Res 10(10):969–977. https://doi.org/10.1038/oby.2002.132
CAS
Article
PubMed
Google Scholar
Thom G, Dombrowski SU, Brosnahan N, Algindan YY, Rosario Lopez-Gonzalez M, Roditi G, Lean MEJ, Malkova D (2020) The role of appetite-related hormones, adaptive thermogenesis, perceived hunger and stress in long-term weight-loss maintenance: a mixed-methods study. Eur J Clin Nutr 74(4):622–632. https://doi.org/10.1038/s41430-020-0568-9
CAS
Article
PubMed
Google Scholar
Ten Haaf T, Verreijen AM, Memelink RG, Tieland M, Weijs PJM (2018) Reduction in energy expenditure during weight loss is higher than predicted based on fat free mass and fat mass in older adults. Clin Nutr 37(1):250–253. https://doi.org/10.1016/j.clnu.2016.12.014
Article
PubMed
Google Scholar
Borges JH, Hunter GR, Silva AM, Cirolini VX, Langer RD, Páscoa MA, Guerra-Júnior G, Gonçalves EM (2019) Adaptive thermogenesis and changes in body composition and physical fitness in army cadets. J Sports Med Phys Fit 59(1):94–101. https://doi.org/10.23736/s0022-4707.17.08066-5
Article
Google Scholar
Silva AM, Matias CN, Santos DA, Thomas D, Bosy-Westphal A, MüLler MJ, Heymsfield SB, Sardinha LB (2017) Compensatory changes in energy balance regulation over one athletic season. Med Sci Sports Exerc 49(6):1229–1235. https://doi.org/10.1249/mss.0000000000001216
Article
PubMed
Google Scholar
Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ, Jordan HS, Kendall KA, Lux LJ, Mentor-Marcel R, Morgan LC, Trisolini MG, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomaselli GF (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 129(25 Suppl 2):S102-138. https://doi.org/10.1161/01.cir.0000437739.71477.ee
Article
PubMed
Google Scholar
Silva AM, Nunes CL, Jesus F, Francisco R, Matias CN, Cardoso M, Santos I, Carraça EV, Finlayson G, Silva MN, Dickinson S, Allison D, Minderico CS, Martins P, Sardinha LB (2021) Effectiveness of a lifestyle weight-loss intervention targeting inactive former elite athletes: the Champ4Life randomised controlled trial. Br J Sports Med. https://doi.org/10.1136/bjsports-2021-104212
Article
PubMed
Google Scholar
Maclean PS, Bergouignan A, Cornier MA, Jackman MR (2011) Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 301(3):R581-600. https://doi.org/10.1152/ajpregu.00755.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Mars M, de Graaf C, de Groot LC, Kok FJ (2005) Decreases in fasting leptin and insulin concentrations after acute energy restriction and subsequent compensation in food intake. Am J Clin Nutr 81(3):570–577. https://doi.org/10.1093/ajcn/81.3.570
CAS
Article
PubMed
Google Scholar
Mars M, de Graaf C, de Groot CP, van Rossum CT, Kok FJ (2006) Fasting leptin and appetite responses induced by a 4-day 65%-energy-restricted diet. Int J Obes (Lond) 30(1):122–128. https://doi.org/10.1038/sj.ijo.0803070
CAS
Article
Google Scholar
Tremblay A, Pelletier C, Doucet E, Imbeault P (2004) Thermogenesis and weight loss in obese individuals: a primary association with organochlorine pollution. Int J Obes Relat Metab Disord 28(7):936–939. https://doi.org/10.1038/sj.ijo.0802527
CAS
Article
PubMed
Google Scholar
Pardini RS (1971) Polychlorinated biphenyls (PCB): effect on mitochondrial enzyme systems. Bull Environ Contam Toxicol 6(6):539–545. https://doi.org/10.1007/bf01796863
CAS
Article
PubMed
Google Scholar
Pelletier C, Doucet E, Imbeault P, Tremblay A (2002) Associations between weight loss-induced changes in plasma organochlorine concentrations, serum T(3) concentration, and resting metabolic rate. Toxicol Sci 67(1):46–51. https://doi.org/10.1093/toxsci/67.1.46
CAS
Article
PubMed
Google Scholar
Karl JP, Roberts SB, Schaefer EJ, Gleason JA, Fuss P, Rasmussen H, Saltzman E, Das SK (2015) Effects of carbohydrate quantity and glycemic index on resting metabolic rate and body composition during weight loss. Obesity (Silver Spring) 23(11):2190–2198. https://doi.org/10.1002/oby.21268
CAS
Article
Google Scholar
Pourhassan M, Bosy-Westphal A, Schautz B, Braun W, Glüer CC, Müller MJ (2014) Impact of body composition during weight change on resting energy expenditure and homeostasis model assessment index in overweight nonsmoking adults. Am J Clin Nutr 99(4):779–791. https://doi.org/10.3945/ajcn.113.071829
CAS
Article
PubMed
Google Scholar
de Jonge L, Bray GA, Smith SR, Ryan DH, de Souza RJ, Loria CM, Champagne CM, Williamson DA, Sacks FM (2012) Effect of diet composition and weight loss on resting energy expenditure in the POUNDS LOST study. Obesity (Silver Spring) 20(12):2384–2389. https://doi.org/10.1038/oby.2012.127
CAS
Article
Google Scholar
Muller MJ, Enderle J, Bosy-Westphal A (2016) Changes in energy expenditure with weight gain and weight loss in humans. Curr Obes Rep 5(4):413–423. https://doi.org/10.1007/s13679-016-0237-4
Article
PubMed
PubMed Central
Google Scholar
Bosy-Westphal A, Kossel E, Goele K, Later W, Hitze B, Settler U, Heller M, Gluer CC, Heymsfield SB, Muller MJ (2009) Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr 90(4):993–1001. https://doi.org/10.3945/ajcn.2008.27402
CAS
Article
PubMed
Google Scholar
Bosy-Westphal A, Schautz B, Lagerpusch M, Pourhassan M, Braun W, Goele K, Heller M, Glüer CC, Müller MJ (2013) Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults. Int J Obes (Lond) 37(10):1371–1377. https://doi.org/10.1038/ijo.2013.1
CAS
Article
Google Scholar
Müller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, Glüer CC, Kehayias JJ, Kiosz D, Bosy-Westphal A (2015) Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr 102(4):807–819. https://doi.org/10.3945/ajcn.115.109173
CAS
Article
PubMed
Google Scholar
Nymo S, Coutinho SR, Torgersen LH, Bomo OJ, Haugvaldstad I, Truby H, Kulseng B, Martins C (2018) Timeline of changes in adaptive physiological responses, at the level of energy expenditure, with progressive weight loss. Br J Nutr 120(2):141–149. https://doi.org/10.1017/s0007114518000922
CAS
Article
PubMed
PubMed Central
Google Scholar
Bosy-Westphal A, Müller MJ, Boschmann M, Klaus S, Kreymann G, Lührmann PM, Neuhäuser-Berthold M, Noack R, Pirke KM, Platte P, Selberg O, Steiniger J (2009) Grade of adiposity affects the impact of fat mass on resting energy expenditure in women. Br J Nutr 101(4):474–477. https://doi.org/10.1017/s0007114508020357
CAS
Article
PubMed
Google Scholar
Bosy-Westphal A, Braun W, Schautz B, Müller MJ (2013) Issues in characterizing resting energy expenditure in obesity and after weight loss. Front Physiol 4:47. https://doi.org/10.3389/fphys.2013.00047
Article
PubMed
PubMed Central
Google Scholar
Müller MJ, Heymsfield SB, Bosy-Westphal A (2021) Are metabolic adaptations to weight changes an artefact? Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqab184
Article
PubMed
PubMed Central
Google Scholar
Nunes CL, Casanova N, Francisco R, Bosy-Westphal A, Hopkins M, Sardinha LB, Silva AM (2021) Does Adaptive Thermogenesis occur after weight loss in adults? A systematic review. Br J Nutr. https://doi.org/10.1017/S0007114521001094
Article
PubMed
Google Scholar
Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR (2005) Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 82(5):941–948. https://doi.org/10.1093/ajcn/82.5.941
CAS
Article
PubMed
Google Scholar
Rosenbaum M, Leibel RL (2016) Models of energy homeostasis in response to maintenance of reduced body weight. Obesity (Silver Spring) 24(8):1620–1629. https://doi.org/10.1002/oby.21559
Article
Google Scholar
Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD (2012) Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab 97(7):2489–2496. https://doi.org/10.1210/jc.2012-1444
CAS
Article
PubMed
PubMed Central
Google Scholar
Müller MJ (2019) About “spendthrift” and “thrifty” phenotypes: resistance and susceptibility to overeating revisited. Am J Clin Nutr 110(3):542–543. https://doi.org/10.1093/ajcn/nqz090
Article
PubMed
Google Scholar
Piaggi P, Vinales KL, Basolo A, Santini F, Krakoff J (2018) Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. J Endocrinol Invest 41(1):83–89. https://doi.org/10.1007/s40618-017-0732-9
CAS
Article
PubMed
Google Scholar
McNeil J, Schwartz A, Rabasa-Lhoret R, Lavoie JM, Brochu M, Doucet É (2015) Changes in leptin and peptide YY do not explain the greater-than-predicted decreases in resting energy expenditure after weight loss. J Clin Endocrinol Metab 100(3):E443-452. https://doi.org/10.1210/jc.2014-2210
CAS
Article
PubMed
Google Scholar
Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, Chen KY, Skarulis MC, Walter M, Walter PJ, Hall KD (2016) Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity (Silver Spring) 24(8):1612–1619. https://doi.org/10.1002/oby.21538
Article
Google Scholar