Skip to main content
Log in

Adaptive thermogenesis after moderate weight loss: magnitude and methodological issues

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was (1) to assess AT through 13 different mathematical approaches and to compare their results; and (2) to understand if AT occurs after moderate WL.

Methods

Ninety-four participants [mean (SD); BMI, 31.1 (4.3) kg/m2; age, 43.0 (9.4) years; 34% females] underwent a 1-year lifestyle intervention (clinicaltrials.gov ID: NCT03031951) and were randomized to intervention (IG, n = 49) or control groups (CG, n = 45), and all measurements were made at baseline and after 4 months. Fat mass (FM) and fat-free mass (FFM) were measured by dual-energy X-ray absorptiometry and REE by indirect calorimetry. AT was assessed through 13 different approaches, varying in how REE was predicted and/or how AT was assessed.

Results

IG underwent a mean negative energy balance (EB) of 270 (289) kcal/day, p < 0.001), resulting in a WL of − 4.8 (4.9)% and an FM loss of − 11.3 (10.8)%. Regardless of approach, AT occurred in the IG, ranging from ~ − 65 to ~ − 230 kcal/day and three approaches showed significant AT in the CG.

Conclusions

Regardless of approach, AT occurred after moderate WL in the IG. AT assessment should be standardized and comparisons among studies with different methodologies to assess AT must be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Non applicable.

Code availability

Non applicable.

References

  1. Edholm OG, Adam JM, Healy MJ, Wolff HS, Goldsmith R, Best TW (1970) Food intake and energy expenditure of army recruits. Br J Nutr 24(4):1091–1107. https://doi.org/10.1079/bjn19700112

    Article  CAS  PubMed  Google Scholar 

  2. Casanova N, Beaulieu K, Finlayson G, Hopkins M (2019) Metabolic adaptations during negative energy balance and their potential impact on appetite and food intake. Proc Nutr Soc 78(3):279–289. https://doi.org/10.1017/s0029665118002811

    Article  PubMed  Google Scholar 

  3. Melby CL, Paris HL, Foright RM, Peth J (2017) Attenuating the biologic drive for weight regain following weight loss: must what goes down always go back up? Nutrients. https://doi.org/10.3390/nu9050468

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Robertson C, Sharma P, Fraser C, MacLennan G (2017) Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ. https://doi.org/10.1136/bmj.j4849

    Article  PubMed  PubMed Central  Google Scholar 

  5. Felix HC, West DS (2013) Effectiveness of weight loss interventions for obese older adults. Am J Health Promot AJHP 27(3):191–199. https://doi.org/10.4278/ajhp.110617-LIT-259

    Article  PubMed  Google Scholar 

  6. Gurevich-Panigrahi T, Panigrahi S, Wiechec E, Los M (2009) Obesity: pathophysiology and clinical management. Curr Med Chem 16(4):506–521. https://doi.org/10.2174/092986709787315568

    Article  CAS  PubMed  Google Scholar 

  7. Thomas DM, Bouchard C, Church T, Slentz C, Kraus WE, Redman LM, Martin CK, Silva AM, Vossen M, Westerterp K, Heymsfield SB (2012) Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes Rev 13(10):835–847. https://doi.org/10.1111/j.1467-789X.2012.01012.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levine JA, Eberhardt NL, Jensen MD (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283(5399):212–214

    Article  CAS  Google Scholar 

  9. Hollstein T, Basolo A, Ando T, Krakoff J, Piaggi P (2021) Reduced adaptive thermogenesis during acute protein-imbalanced overfeeding is a metabolic hallmark of the human thrifty phenotype. Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqab209

    Article  PubMed  Google Scholar 

  10. Gulick A (1995) A study of weight regulation in the adult human body during over-nutrition. Obes Res 3(5):501–512. https://doi.org/10.1002/j.1550-8528.1995.tb00182.x

    Article  CAS  PubMed  Google Scholar 

  11. Neumann RO (1902) Experimentelle beiträge zur lehre von dem täglichen nahrungsbedarf des menschen unter besonderer berück-sichtigung der notwendigen eiweissmenge

  12. Rothwell NJ, Stock MJ (1983) Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond) 64(1):19–23. https://doi.org/10.1042/cs0640019

    Article  CAS  Google Scholar 

  13. Hervey GR, Tobin G (1983) Luxuskonsumption, diet-induced thermogenesis and brown fat: a critical review. Clin Sci (Lond) 64(1):7–18. https://doi.org/10.1042/cs0640007

    Article  CAS  Google Scholar 

  14. Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332(10):621–628. https://doi.org/10.1056/nejm199503093321001

    Article  CAS  Google Scholar 

  15. Major GC, Doucet E, Trayhurn P, Astrup A, Tremblay A (2007) Clinical significance of adaptive thermogenesis. Int J Obes (Lond) 31(2):204–212. https://doi.org/10.1038/sj.ijo.0803523

    Article  CAS  Google Scholar 

  16. Dulloo AG, Jacquet J, Montani JP, Schutz Y (2012) Adaptive thermogenesis in human body weight regulation: more of a concept than a measurable entity? Obes Rev 13(Suppl 2):105–121. https://doi.org/10.1111/j.1467-789X.2012.01041.x

    Article  PubMed  Google Scholar 

  17. Heinitz S, Hollstein T, Ando T, Walter M, Basolo A, Krakoff J, Votruba SB, Piaggi P (2020) Early adaptive thermogenesis is a determinant of weight loss after six weeks of caloric restriction in overweight subjects. Metabolism 110:154303. https://doi.org/10.1016/j.metabol.2020.154303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomez-Arbelaez D, Crujeiras AB, Castro AI, Martinez-Olmos MA, Canton A, Ordoñez-Mayan L, Sajoux I, Galban C, Bellido D, Casanueva FF (2018) Resting metabolic rate of obese patients under very low calorie ketogenic diet. Nutr Metab (Lond) 15:18. https://doi.org/10.1186/s12986-018-0249-z

    Article  CAS  Google Scholar 

  19. Browning MG, Rabl C, Campos GM (2017) Blunting of adaptive thermogenesis as a potential additional mechanism to promote weight loss after gastric bypass. Surg Obes Relat Dis 13(4):669–673. https://doi.org/10.1016/j.soard.2016.11.016

    Article  PubMed  Google Scholar 

  20. Marlatt KL, Redman LM, Burton JH, Martin CK, Ravussin E (2017) Persistence of weight loss and acquired behaviors 2 year after stopping a 2-year calorie restriction intervention. Am J Clin Nutr 105(4):928–935. https://doi.org/10.3945/ajcn.116.146837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Novaes Ravelli M, Schoeller DA, Crisp AH, Shriver T, Ferriolli E, Ducatti C, Marques de Oliveira MR (2019) Influence of energy balance on the rate of weight loss throughout one year of Roux-en-Y gastric bypass: a doubly labeled water study. Obes Surg 29(10):3299–3308. https://doi.org/10.1007/s11695-019-03989-z

    Article  PubMed  Google Scholar 

  22. Wolfe BM, Schoeller DA, McCrady-Spitzer SK, Thomas DM, Sorenson CE, Levine JA (2018) Resting metabolic rate, total daily energy expenditure, and metabolic adaptation 6 months and 24 months after bariatric surgery. Obesity (Silver Spring) 26(5):862–868. https://doi.org/10.1002/oby.22138

    Article  Google Scholar 

  23. Martins C, Gower BA, Hill JO, Hunter GR (2020) Metabolic adaptation is not a major barrier to weight-loss maintenance. Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqaa086

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martins C, Roekenes J, Salamati S, Gower BA, Hunter GR (2020) Metabolic adaptation is an illusion, only present when participants are in negative energy balance. Am J Clin Nutr 112(5):1212–1218. https://doi.org/10.1093/ajcn/nqaa220

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bettini S, Bordigato E, Fabris R, Serra R, Dal Pra C, Belligoli A, Sanna M, Compagnin C, Foletto M, Prevedello L, Fioretto P, Vettor R, Busetto L (2018) Modifications of resting energy expenditure after sleeve gastrectomy. Obes Surg 28(8):2481–2486. https://doi.org/10.1007/s11695-018-3190-3

    Article  PubMed  Google Scholar 

  26. Tam CS, Rigas G, Heilbronn LK, Matisan T, Probst Y, Talbot M (2016) Energy adaptations persist 2 years after sleeve gastrectomy and gastric bypass. Obes Surg 26(2):459–463. https://doi.org/10.1007/s11695-015-1972-4

    Article  PubMed  Google Scholar 

  27. Carrasco F, Papapietro K, Csendes A, Salazar G, Echenique C, Lisboa C, Diaz E, Rojas J (2007) Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes Surg 17(5):608–616. https://doi.org/10.1007/s11695-007-9117-z

    Article  PubMed  Google Scholar 

  28. Flatt JP (2007) Exaggerated claim about adaptive thermogenesis. Int J Obes (Lond) 31(10):1626. https://doi.org/10.1038/sj.ijo.0803641 (author reply 1627–1628)

    Article  CAS  Google Scholar 

  29. Kuchnia A, Huizenga R, Frankenfield D, Matthie JR, Earthman CP (2016) Overstated metabolic adaptation after “the biggest loser” intervention. Obesity 24(10):2025–2025. https://doi.org/10.1002/oby.21638

    Article  PubMed  Google Scholar 

  30. Muller MJ, Bosy-Westphal A (2013) Adaptive thermogenesis with weight loss in humans. Obesity (Silver Spring) 21(2):218–228. https://doi.org/10.1002/oby.20027

    Article  CAS  Google Scholar 

  31. Byrne NM, Sainsbury A, King NA, Hills AP, Wood RE (2018) Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. Int J Obes (Lond) 42(2):129–138. https://doi.org/10.1038/ijo.2017.206

    Article  CAS  Google Scholar 

  32. Silva AM, Nunes CL, Matias CN, Jesus F, Francisco R, Cardoso M, Santos I, Carraça EV, Silva MN, Sardinha LB, Martins P, Minderico CS (2020) Champ4life study protocol: a one-year randomized controlled trial of a lifestyle intervention for inactive former elite athletes with overweight/obesity. Nutrients. https://doi.org/10.3390/nu12020286

    Article  PubMed  PubMed Central  Google Scholar 

  33. American College of Sports M, Riebe D, Ehrman JK, Liguori G, Magal M (2018) ACSM's guidelines for exercise testing and prescription

  34. Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19(2):127–140. https://doi.org/10.1016/j.jocd.2016.03.003

    Article  PubMed  Google Scholar 

  35. Compher C, Frankenfield D, Keim N, Roth-Yousey L (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 106(6):881–903. https://doi.org/10.1016/j.jada.2006.02.009

    Article  PubMed  Google Scholar 

  36. Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109(1–2):1–9

    Article  Google Scholar 

  37. Hayes M, Chustek M, Wang Z, Gallagher D, Heshka S, Spungen A, Bauman W, Heymsfield SB (2002) DXA: potential for creating a metabolic map of organ-tissue resting energy expenditure components. Obes Res 10(10):969–977. https://doi.org/10.1038/oby.2002.132

    Article  CAS  PubMed  Google Scholar 

  38. Thom G, Dombrowski SU, Brosnahan N, Algindan YY, Rosario Lopez-Gonzalez M, Roditi G, Lean MEJ, Malkova D (2020) The role of appetite-related hormones, adaptive thermogenesis, perceived hunger and stress in long-term weight-loss maintenance: a mixed-methods study. Eur J Clin Nutr 74(4):622–632. https://doi.org/10.1038/s41430-020-0568-9

    Article  CAS  PubMed  Google Scholar 

  39. Ten Haaf T, Verreijen AM, Memelink RG, Tieland M, Weijs PJM (2018) Reduction in energy expenditure during weight loss is higher than predicted based on fat free mass and fat mass in older adults. Clin Nutr 37(1):250–253. https://doi.org/10.1016/j.clnu.2016.12.014

    Article  PubMed  Google Scholar 

  40. Borges JH, Hunter GR, Silva AM, Cirolini VX, Langer RD, Páscoa MA, Guerra-Júnior G, Gonçalves EM (2019) Adaptive thermogenesis and changes in body composition and physical fitness in army cadets. J Sports Med Phys Fit 59(1):94–101. https://doi.org/10.23736/s0022-4707.17.08066-5

    Article  Google Scholar 

  41. Silva AM, Matias CN, Santos DA, Thomas D, Bosy-Westphal A, MüLler MJ, Heymsfield SB, Sardinha LB (2017) Compensatory changes in energy balance regulation over one athletic season. Med Sci Sports Exerc 49(6):1229–1235. https://doi.org/10.1249/mss.0000000000001216

    Article  PubMed  Google Scholar 

  42. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ, Jordan HS, Kendall KA, Lux LJ, Mentor-Marcel R, Morgan LC, Trisolini MG, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomaselli GF (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 129(25 Suppl 2):S102-138. https://doi.org/10.1161/01.cir.0000437739.71477.ee

    Article  PubMed  Google Scholar 

  43. Silva AM, Nunes CL, Jesus F, Francisco R, Matias CN, Cardoso M, Santos I, Carraça EV, Finlayson G, Silva MN, Dickinson S, Allison D, Minderico CS, Martins P, Sardinha LB (2021) Effectiveness of a lifestyle weight-loss intervention targeting inactive former elite athletes: the Champ4Life randomised controlled trial. Br J Sports Med. https://doi.org/10.1136/bjsports-2021-104212

    Article  PubMed  Google Scholar 

  44. Maclean PS, Bergouignan A, Cornier MA, Jackman MR (2011) Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 301(3):R581-600. https://doi.org/10.1152/ajpregu.00755.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mars M, de Graaf C, de Groot LC, Kok FJ (2005) Decreases in fasting leptin and insulin concentrations after acute energy restriction and subsequent compensation in food intake. Am J Clin Nutr 81(3):570–577. https://doi.org/10.1093/ajcn/81.3.570

    Article  CAS  PubMed  Google Scholar 

  46. Mars M, de Graaf C, de Groot CP, van Rossum CT, Kok FJ (2006) Fasting leptin and appetite responses induced by a 4-day 65%-energy-restricted diet. Int J Obes (Lond) 30(1):122–128. https://doi.org/10.1038/sj.ijo.0803070

    Article  CAS  Google Scholar 

  47. Tremblay A, Pelletier C, Doucet E, Imbeault P (2004) Thermogenesis and weight loss in obese individuals: a primary association with organochlorine pollution. Int J Obes Relat Metab Disord 28(7):936–939. https://doi.org/10.1038/sj.ijo.0802527

    Article  CAS  PubMed  Google Scholar 

  48. Pardini RS (1971) Polychlorinated biphenyls (PCB): effect on mitochondrial enzyme systems. Bull Environ Contam Toxicol 6(6):539–545. https://doi.org/10.1007/bf01796863

    Article  CAS  PubMed  Google Scholar 

  49. Pelletier C, Doucet E, Imbeault P, Tremblay A (2002) Associations between weight loss-induced changes in plasma organochlorine concentrations, serum T(3) concentration, and resting metabolic rate. Toxicol Sci 67(1):46–51. https://doi.org/10.1093/toxsci/67.1.46

    Article  CAS  PubMed  Google Scholar 

  50. Karl JP, Roberts SB, Schaefer EJ, Gleason JA, Fuss P, Rasmussen H, Saltzman E, Das SK (2015) Effects of carbohydrate quantity and glycemic index on resting metabolic rate and body composition during weight loss. Obesity (Silver Spring) 23(11):2190–2198. https://doi.org/10.1002/oby.21268

    Article  CAS  Google Scholar 

  51. Pourhassan M, Bosy-Westphal A, Schautz B, Braun W, Glüer CC, Müller MJ (2014) Impact of body composition during weight change on resting energy expenditure and homeostasis model assessment index in overweight nonsmoking adults. Am J Clin Nutr 99(4):779–791. https://doi.org/10.3945/ajcn.113.071829

    Article  CAS  PubMed  Google Scholar 

  52. de Jonge L, Bray GA, Smith SR, Ryan DH, de Souza RJ, Loria CM, Champagne CM, Williamson DA, Sacks FM (2012) Effect of diet composition and weight loss on resting energy expenditure in the POUNDS LOST study. Obesity (Silver Spring) 20(12):2384–2389. https://doi.org/10.1038/oby.2012.127

    Article  CAS  Google Scholar 

  53. Muller MJ, Enderle J, Bosy-Westphal A (2016) Changes in energy expenditure with weight gain and weight loss in humans. Curr Obes Rep 5(4):413–423. https://doi.org/10.1007/s13679-016-0237-4

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bosy-Westphal A, Kossel E, Goele K, Later W, Hitze B, Settler U, Heller M, Gluer CC, Heymsfield SB, Muller MJ (2009) Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr 90(4):993–1001. https://doi.org/10.3945/ajcn.2008.27402

    Article  CAS  PubMed  Google Scholar 

  55. Bosy-Westphal A, Schautz B, Lagerpusch M, Pourhassan M, Braun W, Goele K, Heller M, Glüer CC, Müller MJ (2013) Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults. Int J Obes (Lond) 37(10):1371–1377. https://doi.org/10.1038/ijo.2013.1

    Article  CAS  Google Scholar 

  56. Müller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, Glüer CC, Kehayias JJ, Kiosz D, Bosy-Westphal A (2015) Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr 102(4):807–819. https://doi.org/10.3945/ajcn.115.109173

    Article  CAS  PubMed  Google Scholar 

  57. Nymo S, Coutinho SR, Torgersen LH, Bomo OJ, Haugvaldstad I, Truby H, Kulseng B, Martins C (2018) Timeline of changes in adaptive physiological responses, at the level of energy expenditure, with progressive weight loss. Br J Nutr 120(2):141–149. https://doi.org/10.1017/s0007114518000922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bosy-Westphal A, Müller MJ, Boschmann M, Klaus S, Kreymann G, Lührmann PM, Neuhäuser-Berthold M, Noack R, Pirke KM, Platte P, Selberg O, Steiniger J (2009) Grade of adiposity affects the impact of fat mass on resting energy expenditure in women. Br J Nutr 101(4):474–477. https://doi.org/10.1017/s0007114508020357

    Article  CAS  PubMed  Google Scholar 

  59. Bosy-Westphal A, Braun W, Schautz B, Müller MJ (2013) Issues in characterizing resting energy expenditure in obesity and after weight loss. Front Physiol 4:47. https://doi.org/10.3389/fphys.2013.00047

    Article  PubMed  PubMed Central  Google Scholar 

  60. Müller MJ, Heymsfield SB, Bosy-Westphal A (2021) Are metabolic adaptations to weight changes an artefact? Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqab184

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nunes CL, Casanova N, Francisco R, Bosy-Westphal A, Hopkins M, Sardinha LB, Silva AM (2021) Does Adaptive Thermogenesis occur after weight loss in adults? A systematic review. Br J Nutr. https://doi.org/10.1017/S0007114521001094

    Article  PubMed  Google Scholar 

  62. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR (2005) Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 82(5):941–948. https://doi.org/10.1093/ajcn/82.5.941

    Article  CAS  PubMed  Google Scholar 

  63. Rosenbaum M, Leibel RL (2016) Models of energy homeostasis in response to maintenance of reduced body weight. Obesity (Silver Spring) 24(8):1620–1629. https://doi.org/10.1002/oby.21559

    Article  Google Scholar 

  64. Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD (2012) Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab 97(7):2489–2496. https://doi.org/10.1210/jc.2012-1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Müller MJ (2019) About “spendthrift” and “thrifty” phenotypes: resistance and susceptibility to overeating revisited. Am J Clin Nutr 110(3):542–543. https://doi.org/10.1093/ajcn/nqz090

    Article  PubMed  Google Scholar 

  66. Piaggi P, Vinales KL, Basolo A, Santini F, Krakoff J (2018) Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. J Endocrinol Invest 41(1):83–89. https://doi.org/10.1007/s40618-017-0732-9

    Article  CAS  PubMed  Google Scholar 

  67. McNeil J, Schwartz A, Rabasa-Lhoret R, Lavoie JM, Brochu M, Doucet É (2015) Changes in leptin and peptide YY do not explain the greater-than-predicted decreases in resting energy expenditure after weight loss. J Clin Endocrinol Metab 100(3):E443-452. https://doi.org/10.1210/jc.2014-2210

    Article  CAS  PubMed  Google Scholar 

  68. Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, Chen KY, Skarulis MC, Walter M, Walter PJ, Hall KD (2016) Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity (Silver Spring) 24(8):1612–1619. https://doi.org/10.1002/oby.21538

    Article  Google Scholar 

Download references

Funding

Financial support was provided by the Portuguese Institute of Sports and Youth and by the International Olympic Committee, under the Olympic Solidarity Promotion of the Olympic Values Unit (Sports Medicine and Protection of Clean Athletes Programme). The current work was also supported by national funding from the Portuguese Foundation for Science and Technology within the R&D units UIDB/00447/2020. C.L.N. and R.F. were supported with a Ph.D. scholarship from the Portuguese Foundation for Science and Technology (SFRH/BD/143725/2019 and 2020.05397.BD, respectively).

Author information

Authors and Affiliations

Authors

Contributions

CLN: conceptualization, methodology, data curation, data analysis, and writing the original draft. CNM, FJ, and RF: data curation, reviewing, and editing. MH: data analysis, reviewing, and editing. SBH, AB-W, LBS, PM, and CSM: reviewing and editing. AMS: conceptualization, methodology, supervision, reviewing, and editing.

Corresponding author

Correspondence to Analiza M. Silva.

Ethics declarations

Conflict of interest

The authors reported no conflicts of interest.

Ethics approval

The Ethics Committee of the Faculty of Human Kinetics, University of Lisbon (Lisbon, Portugal), approved the study (CEFMH Approval Number: 16/2016).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 463 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, C.L., Jesus, F., Francisco, R. et al. Adaptive thermogenesis after moderate weight loss: magnitude and methodological issues. Eur J Nutr 61, 1405–1416 (2022). https://doi.org/10.1007/s00394-021-02742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02742-6

Keywords

Navigation