Skip to main content

Advertisement

Log in

Magnesium intake is inversely associated with risk of non-alcoholic fatty liver disease among American adults

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Human data are limited linking magnesium (Mg) intake to the risk of non-alcoholic fatty liver disease (NAFLD). We aimed to examine the association between Mg intake and the risk of NAFLD among young adults in the US with a 25-year follow-up.

Methods

This study included 2685 participants from the Coronary Artery Risk Development in Young Adult (CARDIA) study. Diet and dietary supplements were assessed at baseline (1985–1986) and exam years 7 and 20 using an interview-based dietary history. NAFLD, defined as liver attenuation ≤ 51 Hounsfield Units excluding secondary causes of liver fat accumulation, was identified by non-contrast-computed tomography scanning at exam year 25. Multivariable-adjusted logistic regression model was used to examine the associations between cumulative average total intake of Mg (dietary plus supplemental) and NAFLD odds.

Results

A total of 629 NAFLD cases were documented. After adjustment for potential confounders, an inverse association between total Mg intake and NAFLD odds was observed. Compared to participants in the lowest quintile of total Mg intake, the odds of NAFLD was 55% lower among individuals in the highest quintile [multivariable-adjusted odds ratio (OR) = 0.45, 95% confidence interval (CI) (0.23, 0.85), p for trend = 0.03]. Consistently, whole-grain consumption, a major dietary source of Mg, was inversely associated with NAFLD odds (p for trend = 0.02).

Conclusions

This study suggests that higher cumulative intake of Mg throughout adulthood is associated with lower odds of NAFLD in midlife. Future studies are needed to establish a possible causal relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Data and material described in the manuscript will be made available upon request pending.

Code availability

The analytic code or code book used in this manuscript will be made available upon request pending.

References

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84. https://doi.org/10.1002/hep.28431

    Article  PubMed  Google Scholar 

  2. Younossi ZM, Stepanova M, Afendy M, Fang Y, Younossi Y, Mir H, Srishord M (2011) Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol 9:524–530. https://doi.org/10.1016/j.cgh.2011.03.020

    Article  PubMed  Google Scholar 

  3. Younossi ZM, Otgonsuren M, Henry L, Venkatesan C, Mishra A, Erario M, Hunt S (2015) Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology 62:1723–1730. https://doi.org/10.1002/hep.28123

    Article  CAS  PubMed  Google Scholar 

  4. Younossi Z, Stepanova M, Ong JP, Jacobson IM, Bugianesi E, Duseja A, Eguchi Y, Wong VW, Negro F, Yilmaz Y, Romero-Gomez M, George J, Ahmed A, Wong R, Younossi I, Ziayee M, Afendy A (2019) Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol 17:748-755.e3. https://doi.org/10.1016/j.cgh.2018.05.057

    Article  PubMed  Google Scholar 

  5. Patrick L (2002) Nonalcoholic fatty liver disease: relationship to insulin sensitivity and oxidative stress. Treatment approaches using vitamin E, magnesium, and betaine. Altern Med Rev 7:276–291

    PubMed  Google Scholar 

  6. Birkenfeld AL, Shulman GI (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59:713–723. https://doi.org/10.1002/hep.26672

    Article  PubMed  Google Scholar 

  7. Kandeel FR, Balon E, Scott S, Nadler JL (1996) Magnesium deficiency and glucose metabolism in rat adipocytes. Metabolism 45:838–843. https://doi.org/10.1016/S0026-0495(96)90156-0

    Article  CAS  PubMed  Google Scholar 

  8. Balon TW, Gu JL, Tokuyama Y, Jasman AP, Nadler JL (1995) Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am J Physiol 269:E745-752. https://doi.org/10.1152/ajpendo.1995.269.4.E745

    Article  CAS  PubMed  Google Scholar 

  9. Morais JBS, Severo JS, de Alencar GRR, de Oliveira ARS, Cruz KJC, Marreiro DDN, Freitas B, de Carvalho CMR, Martins M, Frota KMG (2017) Effect of magnesium supplementation on insulin resistance in humans: a systematic review. Nutrition 38:54–60. https://doi.org/10.1016/j.nut.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  10. Sohrabipour S, Sharifi MR, Sharifi M, Talebi A, Soltani N (2018) Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: using the hyperinsulinemic-euglycemic clamp technique. Fundam Clin Pharmacol 32:603–616. https://doi.org/10.1111/fcp.12387

    Article  CAS  PubMed  Google Scholar 

  11. Freedman AM, Mak IT, Stafford RE, Dickens BF, Cassidy MM, Muesing RA, Weglicki WB (1992) Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol 262:C1371-1375. https://doi.org/10.1152/ajpcell.1992.262.6.C1371

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen FH (2018) Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res 11:25–34. https://doi.org/10.2147/jir.S136742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li W, Zhu X, Song Y, Fan L, Wu L, Kabagambe EK, Hou L, Shrubsole MJ, Liu J, Dai Q (2018) Intakes of magnesium, calcium and risk of fatty liver disease and prediabetes. Public Health Nutr 21:2088–2095. https://doi.org/10.1017/S1368980018000642

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eshraghian A, Nikeghbalian S, Geramizadeh B, Malek-Hosseini SA (2018) Serum magnesium concentration is independently associated with non-alcoholic fatty liver and non-alcoholic steatohepatitis. United Eur Gastroenterol J 6:97–103. https://doi.org/10.1177/2050640617707863

    Article  CAS  Google Scholar 

  15. Rosanoff A, Weaver CM, Rude RK (2012) Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev 70:153–164. https://doi.org/10.1111/j.1753-4887.2011.00465.x

    Article  PubMed  Google Scholar 

  16. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr, Liu K, Savage PJ (1988) CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 41:1105–1116. https://doi.org/10.1016/0895-4356(88)90080-7

    Article  CAS  PubMed  Google Scholar 

  17. McDonald A, Van Horn L, Slattery M, Hilner J, Bragg C, Caan B, Jacobs D Jr, Liu K, Hubert H, Gernhofer N, Betz E, Havlik D (1991) The CARDIA dietary history: development, implementation, and evaluation. J Am Diet Assoc 91:1104–1112

    Article  CAS  Google Scholar 

  18. Liu K, Slattery M, Jacobs D Jr, Cutter G, McDonald A, Van Horn L, Hilner JE, Caan B, Bragg C, Dyer A et al (1994) A study of the reliability and comparative validity of the cardia dietary history. Ethn Dis 4:15–27

    CAS  PubMed  Google Scholar 

  19. He K, Song Y, Belin RJ, Chen Y (2006) Magnesium intake and the metabolic syndrome: epidemiologic evidence to date. J Cardiometab Syndr 1:351–355. https://doi.org/10.1111/j.1559-4564.2006.05702.x

    Article  PubMed  Google Scholar 

  20. He K, Liu K, Daviglus ML, Morris SJ, Loria CM, Van Horn L, Jacobs DR, Savage PJ (2006) Magnesium intake and incidence of metabolic syndrome among young adults. Circulation 113:1675–1682. https://doi.org/10.1161/CIRCULATIONAHA.105.588327

    Article  CAS  PubMed  Google Scholar 

  21. Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D, Willett WC (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149:531–540. https://doi.org/10.1093/oxfordjournals.aje.a009849

    Article  CAS  PubMed  Google Scholar 

  22. Sijtsma FP, Meyer KA, Steffen LM, Shikany JM, Van Horn L, Harnack L, Kromhout D, Jacobs DR Jr (2012) Longitudinal trends in diet and effects of sex, race, and education on dietary quality score change: the coronary artery risk development in young adults study. Am J Clin Nutr 95:580–586. https://doi.org/10.3945/ajcn.111.020719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. VanWagner LB, Khan SS, Ning H, Siddique J, Lewis CE, Carr JJ, Vos MB, Speliotes E, Terrault NA, Rinella ME, Lloyd-Jones DM, Allen NB (2018) Body mass index trajectories in young adulthood predict non-alcoholic fatty liver disease in middle age: the CARDIA cohort study. Liver Int 38:706–714. https://doi.org/10.1111/liv.13603

    Article  PubMed  Google Scholar 

  24. VanWagner LB, Ning H, Lewis CE, Shay CM, Wilkins J, Carr JJ, Terry JG, Lloyd-Jones DM, Jacobs DR Jr, Carnethon MR (2014) Associations between nonalcoholic fatty liver disease and subclinical atherosclerosis in middle-aged adults: the coronary artery risk development in young adults study. Atherosclerosis 235:599–605. https://doi.org/10.1016/j.atherosclerosis.2014.05.962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. VanWagner LB, Terry JG, Chow LS, Alman AC, Kang H, Ingram KH, Shay C, Lewis CE, Bryan RN, Launer LJ, Jeffrey Carr J (2017) Nonalcoholic fatty liver disease and measures of early brain health in middle-aged adults: the CARDIA study. Obesity 25:642–651. https://doi.org/10.1002/oby.21767

    Article  CAS  PubMed  Google Scholar 

  26. VanWagner LB, Ning H, Allen NB, Ajmera V, Lewis CE, Carr JJ, Lloyd-Jones DM, Terrault NA, Siddique J (2017) Alcohol use and cardiovascular disease risk in patients with nonalcoholic fatty liver disease. Gastroenterology 153:1260-1272.e3. https://doi.org/10.1053/j.gastro.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  27. Kodama Y, Ng CS, Wu TT, Ayers GD, Curley SA, Abdalla EK, Vauthey JN, Charnsangavej C (2007) Comparison of CT methods for determining the fat content of the liver. Am J Roentgenol 188:1307–1312. https://doi.org/10.2214/ajr.06.0992

    Article  Google Scholar 

  28. Zeng MD, Fan JG, Lu LG, Li YM, Chen CW, Wang BY, Mao YM (2008) Guidelines for the diagnosis and treatment of nonalcoholic fatty liver diseases. J Dig Dis 9:108–112. https://doi.org/10.1111/j.1751-2980.2008.00331.x

    Article  PubMed  Google Scholar 

  29. Schreiner PJ, Jacobs DR Jr, Wong ND, Kiefe CI (2016) Twenty-five year secular trends in lipids and modifiable risk factors in a population-based biracial cohort: the coronary artery risk development in young adults (CARDIA) study, 1985–2011. J Am Heart Assoc 5:e003384. https://doi.org/10.1161/JAHA.116.003384

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jacobs DR Jr, Hahn LP, Haskell WL, Pirie P, Sidney S (1989) Validity and reliability of short physical activity history: cardia and the minnesota heart health program. J Cardiopulm Rehabil 9:448–459

    Article  Google Scholar 

  31. Reis JP, Allen N, Gunderson EP, Lee JM, Lewis CE, Loria CM, Powell-Wiley TM, Rana JS, Sidney S, Wei G (2015) Excess body mass index-and waist circumference-years and incident cardiovascular disease: the CARDIA study. Obesity 23:879–885. https://doi.org/10.1002/oby.21023

    Article  PubMed  Google Scholar 

  32. Herbert V, Lau KS, Gottlieb CW, Bleicher SJ (1965) Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab 25:1375–1384. https://doi.org/10.1210/jcem-25-10-1375

    Article  CAS  PubMed  Google Scholar 

  33. Bancks MP, Carnethon MR, Jacobs DR, Launer LJ, Reis JP, Schreiner PJ, Shah RV, Sidney S, Yaffe K, Yano Y (2018) Fasting glucose variability in young adulthood and cognitive function in middle age: the coronary artery risk development in young adults (CARDIA) study. Diabetes Care 41:2579–2585. https://doi.org/10.2337/dc18-1287

    Article  PubMed  PubMed Central  Google Scholar 

  34. Warnick GR (1986) Enzymatic methods for quantification of lipoprotein lipids. Methods Enzymol 129:101–123. https://doi.org/10.1016/0076-6879(86)29064-3

    Article  CAS  PubMed  Google Scholar 

  35. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502. https://doi.org/10.1093/clinchem/18.6.499

    Article  CAS  Google Scholar 

  36. Cantero I, Abete I, Monreal JI, Martinez JA, Zulet MA (2017) Fruit fiber consumption specifically improves liver health status in obese subjects under energy restriction. Nutrients 9:667. https://doi.org/10.3390/nu9070667

    Article  CAS  PubMed Central  Google Scholar 

  37. Leamy AK, Egnatchik RA, Young JD (2013) Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 52:165–174. https://doi.org/10.1016/j.plipres.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  38. Fan JG, Cao HX (2013) Role of diet and nutritional management in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 28(Suppl):81–87. https://doi.org/10.1111/jgh.12244

    Article  CAS  PubMed  Google Scholar 

  39. Pacana T, Sanyal AJ (2012) Vitamin E and non-alcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 15:641–648. https://doi.org/10.1097/MCO.0b013e328357f747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiu S, Mulligan K, Schwarz J-M (2018) Dietary carbohydrates and fatty liver disease: de novo lipogenesis. Curr Opin Clin Nutr Metab Care 21:277–282. https://doi.org/10.1097/MCO.0000000000000469

    Article  CAS  PubMed  Google Scholar 

  41. van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR (2006) Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in US black women. Diabetes Care 29:2238–2243. https://doi.org/10.2337/dc06-1014

    Article  CAS  PubMed  Google Scholar 

  42. Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference (1997) The national academies collection: reports funded by national institutes of health. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press, Washington (DC), pp 190–249

    Google Scholar 

  43. Wong VW, Chan WK, Chitturi S, Chawla Y, Dan YY, Duseja A, Fan J, Goh KL, Hamaguchi M, Hashimoto E, Kim SU, Lesmana LA, Lin YC, Liu CJ, Ni YH, Sollano J, Wong SK, Wong GL, Chan HL, Farrell G (2018) Asia-pacific working party on non-alcoholic fatty liver disease guidelines 2017-part 1: definition, risk factors and assessment. J Gastroenterol Hepatol 33:70–85. https://doi.org/10.1111/jgh.13857

    Article  PubMed  Google Scholar 

  44. Kostov K (2019) Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signaling. Int J Mol Sci 20:1351. https://doi.org/10.3390/ijms20061351

    Article  CAS  PubMed Central  Google Scholar 

  45. Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Guerrero-Romero F (2016) A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res 111:272–282. https://doi.org/10.1016/j.phrs.2016.06.019

    Article  CAS  PubMed  Google Scholar 

  46. Morais JB, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira Santos R, de Oliveira AR, Cruz KJ, do Nascimento Marreiro D (2017) Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res 176:20–26. https://doi.org/10.1007/s12011-016-0793-1

    Article  CAS  PubMed  Google Scholar 

  47. Afanas’ev IB, Suslova TB, Cheremisina ZP, Abramova NE, Korkina LG (1995) Study of antioxidant properties of metal aspartates. Analyst 120:859–862. https://doi.org/10.1039/AN9952000859

    Article  CAS  PubMed  Google Scholar 

  48. Poongothai A, Vishnupriya S, Ragunadharao D (2004) Quantitative variation of superoxide dismutase levels in leukaemias. Indian J Hum Genet 10:9–12

    CAS  Google Scholar 

  49. Mahalle N, Garg MK, Mv K, Naik S (2014) Relation of magnesium with insulin resistance and inflammatory markers in subjects with known coronary artery disease. J Cardiovasc Dis Res 5:22–29. https://doi.org/10.5530/jcdr.2014.1.4

    Article  CAS  Google Scholar 

  50. Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs DR Jr, He K (2010) Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 33:2604–2610. https://doi.org/10.2337/dc10-0994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chacko SA, Song Y, Nathan L, Tinker L, de Boer IH, Tylavsky F, Wallace R, Liu S (2010) Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care 33:304–310. https://doi.org/10.2337/dc09-1402

    Article  CAS  PubMed  Google Scholar 

  52. Lu L, Chen C, Yang K, Zhu J, Xun P, Shikany JM, He K (2020) Magnesium intake is inversely associated with risk of obesity in a 30-year prospective follow-up study among American young adults. Eur J Nutr 59:3745–3753. https://doi.org/10.1007/s00394-020-02206-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spengler EK, Loomba R (2015) Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin Proc 90:1233–1246. https://doi.org/10.1016/j.mayocp.2015.06.013

    Article  PubMed  Google Scholar 

  54. Dorosti M, Heidarloo AJ, Bakhshimoghaddam F, Alizadeh M (2020) Whole-grain consumption and its effects on hepatic steatosis and liver enzymes in patients with non-alcoholic fatty liver disease: a randomised controlled clinical trial. Br J Nutr 123:328–336. https://doi.org/10.1017/S0007114519002769

    Article  CAS  PubMed  Google Scholar 

  55. Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, Koteish A, Brancati FL, Clark JM (2013) Prevalence of nonalcoholic fatty liver disease in the United States: the third national health and nutrition examination survey, 1988–1994. Am J Epidemiol 178:38–45. https://doi.org/10.1093/aje/kws448

    Article  PubMed  PubMed Central  Google Scholar 

  56. Blais P, Husain N, Kramer JR, Kowalkowski M, El-Serag H, Kanwal F (2015) Nonalcoholic fatty liver disease is underrecognized in the primary care setting. Am J Gastroenterol 110:10–14. https://doi.org/10.1038/ajg.2014.134

    Article  CAS  PubMed  Google Scholar 

  57. Bae JC, Lee WY, Yoon KH, Park JY, Son HS, Han KA, Lee KW, Woo JT, Ju YC, Lee WJ, Cho YY, Lee MK (2015) Improvement of nonalcoholic fatty liver disease with carnitine-orotate complex in type 2 diabetes (CORONA): a randomized controlled trial. Diabetes Care 38:1245–1252. https://doi.org/10.2337/dc14-2852

    Article  CAS  PubMed  Google Scholar 

  58. Foster T, Budoff MJ, Saab S, Ahmadi N, Gordon C, Guerci AD (2011) Atorvastatin and antioxidants for the treatment of nonalcoholic fatty liver disease: the St Francis heart study randomized clinical trial. Am J Gastroenterol 106:71–77. https://doi.org/10.1038/ajg.2010.299

    Article  CAS  PubMed  Google Scholar 

  59. Yang Y, Zhao X, Xu H, Wang S, Pan Y, Wang S, Xu Q, Jiao R, Gu H, Kong L (2019) Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling. Acta Pharmacol Sin 40:879–894. https://doi.org/10.1038/s41401-018-0194-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all the investigators and the staff working for the Coronary Artery Risk Development in Young Adults (CARDIA) study for their technical and practical support. We also gratefully acknowledge all the participants in CARDIA study for their valuable contribution.

Funding

The Coronary Artery Risk Development in Young Adults Study is supported by grants from the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with the University of Alabama at Birmingham (HHSN268201800005I and HHSN268201800007I), Northwestern University (HHSN268201800003I), University of Minnesota (HHSN268201800006I), and Kaiser Foundation Research Institute (HHSN26820100004I). Representatives of the funding agency have been involved in the review of the manuscript but not directly involved in the collection, management, analysis, or interpretation of the data. This study was partially supported by the National Institutes of Health (NIH) grants (R01HL081572 and R01DK116603).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to the submitted article. KK contributed to the conceptualization and study design. LL and CC contributed to data interpretation, methodology, and statistical analysis. LL wrote the original draft. KK, LL, CC, YL, WG, SZ, JB and JMS contributed to the review and critical revision of the manuscript. KK had primary responsibility for final content. All authors read and gave the final approval.

Corresponding author

Correspondence to Ka Kahe.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest regarding the content of this article.

Ethical approval

All participants in the Coronary Artery Risk Development in Young Adults Study provided written informed consent at each exam, with all procedures approved annually by institutional review boards at each field center and coordinating center. The ethical approval number for this study is 1907082670.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Chen, C., Li, Y. et al. Magnesium intake is inversely associated with risk of non-alcoholic fatty liver disease among American adults. Eur J Nutr 61, 1245–1254 (2022). https://doi.org/10.1007/s00394-021-02732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02732-8

Keywords

Navigation