Skip to main content
Log in

Effect of maternal dietary niacin intake on congenital anomalies: a systematic review and meta-analysis

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The significance of niacin in embryonic development has clinical implications in the counseling of pregnant women and may be used to inform nutrition recommendations. This study, therefore, aims to review the associations between maternal periconceptional niacin intake and congenital anomalies.

Methods

A systematic search of Ovid MEDLINE, ClinicalTrials.gov, AMED, CENTRAL, Emcare, EMBASE, Maternity & Infant Care and Google Scholar was conducted between inception and 30 September 2020. Medical subject heading terms included “nicotinic acids” and related metabolites, “congenital anomalies” and specific types of congenital anomalies. Included studies reported the association between maternal niacin intake and congenital anomalies in their offspring and reported the measure of association. Studies involved solely the women with co-morbidities, animal, in vitro and qualitative studies were excluded. The risk of bias of included studies was assessed using the Newcastle–Ottawa Scale (NOS). A random effects-restricted maximum likelihood model was used to obtain summary estimates, and multivariable meta-regression model was used to adjust study-level covariates.

Results

Of 21,908 retrieved citations, 14 case–control studies including 35,743 women met the inclusion criteria. Ten studies were conducted in the U.S, three in Netherlands and one in South Africa. The meta-analysis showed that expectant mothers with an insufficient niacin intake were significantly more likely to have babies with congenital abnormalities (odds ratio 1.13, 95% confidence interval 1.02–1.24) compared to mothers with adequate niacin intake. A similar association between niacin deficiency and congenital anomalies was observed (OR 1.15, 95% CI 1.03–1.26) when sensitivity analysis was conducted by quality of the included studies. Meta-regression showed neither statistically significant impact of study size (p = 0.859) nor time of niacin assessment (p = 0.127). The overall quality of evidence used is high—thirteen studies achieved a rating of six or seven stars out of a possible nine based on the NOS.

Conclusion

Inadequate maternal niacin intake is associated with an increased risk of congenital anomalies in the offspring. These findings may have implications in dietary counseling and use of niacin supplementation during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Available upon request.

References

  1. World Health Organization (2010) Sixty-third World Health Assembly: Resolutions and Decisions. WHO Press

  2. Carmichael SL (2014) Birth defects epidemiology. Eur J Med Genet 57:355–358. https://doi.org/10.1016/j.ejmg.2014.03.002

    Article  PubMed  Google Scholar 

  3. Christianson A, Howson CP, Modell B (2005) March of Dimes: global report on birth defects, the hidden toll of dying and disabled children. March of Dimes Birth Defects Foundation

  4. Perry M, Mulcahy H, DeFranco E (2017) Influence of periconception smoking behavior on birth defect risk. Obstet Gynecol 129:1S-2S. https://doi.org/10.1016/j.ajog.2019.02.029

    Article  Google Scholar 

  5. Yang J, Qiu H, Qu P, Zhang R, Zeng L, Yan H (2015) Prenatal alcohol exposure and congenital heart defects: a meta-analysis. PLoS ONE 10:e0130681. https://doi.org/10.1371/journal.pone.0130681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carstairs SD (2016) Ondansetron use in pregnancy and birth defects. Obstet Gynecol 127:878–883. https://doi.org/10.1097/AOG.0000000000001388

    Article  CAS  PubMed  Google Scholar 

  7. Feldkamp ML, Meyer RE, Krikov S, Botto LD (2010) Acetaminophen use in pregnancy and risk of birth defects. Obstet Gynecol 115:109–115. https://doi.org/10.1097/AOG.0b013e3181c52616

    Article  CAS  PubMed  Google Scholar 

  8. Kirkland JB, Meyer-Ficca ML (2018) Niacin. Adv Food Nutr Res 83:83–149. https://doi.org/10.1016/bs.afnr.2017.11.003

    Article  PubMed  Google Scholar 

  9. Surjana D, Halliday GM, Damian DL (2010) Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J Nucleic Acids 2010:157591. https://doi.org/10.4061/2010/157591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi H, Enriquez A, Rapadas M, Martin EM, Wang R, Moreau J et al (2017) NAD deficiency, congenital malformations, and niacin supplementation. New Engl J Med 377:544–552. https://doi.org/10.1056/NEJMoa1616361

    Article  CAS  PubMed  Google Scholar 

  11. Feng Y, Paul IA, LeBlanc MH (2006) Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res Bull 69:117–122. https://doi.org/10.1016/j.brainresbull.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  12. Bogan KL, Brenner C (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 28:115–130. https://doi.org/10.1146/annurev.nutr.28.061807.155443

    Article  CAS  PubMed  Google Scholar 

  13. Sauve AA (2008) NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther 324:883–893. https://doi.org/10.1124/jpet.107.120758

    Article  CAS  PubMed  Google Scholar 

  14. de Figueiredo LF, Gossmann TI, Ziegler M, Schuster S (2011) Pathway analysis of NAD+ metabolism. BiochemJ 439:341–348. https://doi.org/10.1042/BJ20110320

    Article  CAS  Google Scholar 

  15. Duckworth S, Mistry HD, Chappell LC (2012) Vitamin supplements in pregnancy. Obstet Gynaecol 14:175–178. https://doi.org/10.1111/j.1744-4667.2012.00116.x

    Article  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Tugwell P (2000) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Avilable from the web http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accesed on 22 Oct 2020

  18. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  19. Egger M, Smith GD (1998) Bias in location and selection of studies. BMJ 316:61–66. https://doi.org/10.1136/bmj.316.7124.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi L, Lin L (2019) The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Medicine (Baltimore) 98:e15987. https://doi.org/10.1097/MD.0000000000015987

    Article  Google Scholar 

  21. Kancherla V, Romitti PA, Sun L, Carey JC, Burns TL, Siega-Riz AM et al (2014) Descriptive and risk factor analysis for choanal atresia: The National Birth Defects Prevention Study, 1997–2007. Eur J Med Genet 57:220–229. https://doi.org/10.1016/j.ejmg.2014.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Feldkamp ML, Carmichael SL, Shaw GM, Panichello JD, Moore CA, Botto LD (2011) Maternal nutrition and gastroschisis: findings from the National Birth Defects Prevention Study. Am J Obstet Gynecol 204:404.e1-404.e10. https://doi.org/10.1016/j.ajog.2010.12.053

    Article  Google Scholar 

  23. Groenen PM, van Rooij IA, Peer PG, OckéZielhuisSteegers-Theunissen MCGARP (2004) Low maternal dietary intakes of iron, magnesium, and niacin are associated with spina bifida in the offspring. J Nutr 134:1516–1522. https://doi.org/10.1093/jn/134.6.1516

    Article  CAS  PubMed  Google Scholar 

  24. Krapels IP, Van Rooij IA, Ocké MC, Van Cleef BA, Kuijpers-Jagtman AM, Steegers-Theunissen RP (2004) Maternal dietary B vitamin intake, other than folate, and the association with orofacial cleft in the offspring. Eur J Nutr 43:7–14. https://doi.org/10.1007/s00394-004-0433-y

    Article  CAS  PubMed  Google Scholar 

  25. Ma C, Shaw GM, Scheuerle AE, Canfield MA, Carmichael SL (2012) Association of microtia with maternal nutrition. Birth Defects Res A Clin Mol Teratol 94:1026–1032. https://doi.org/10.1002/bdra.23053

    Article  CAS  PubMed  Google Scholar 

  26. May PA, Hamrick KJ, Corbin KD, Hasken JM, Marais AS, Brooke LE et al (2014) Dietary intake, nutrition, and fetal alcohol spectrum disorders in the Western Cape Province of South Africa. Reprod Toxicol 46:31–39. https://doi.org/10.1016/j.reprotox.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaw GM, Carmichael SL, Laurent C, Rasmussen SA (2006) Maternal nutrient intakes and risk of orofacial clefts. Epidemiology 17:285–291. https://doi.org/10.1097/01.ede.0000208348.30012.35

    Article  PubMed  Google Scholar 

  28. Shaw GM, Carmichael SL, Laurent C, Louik C, Finnell RH, Lammer EJ (2007) Nutrient intakes in women and risks of anophthalmia and microphthalmia in their offspring. Birth Defects Res A Clin Mol Teratol 79:708–713. https://doi.org/10.1002/bdra.20398

    Article  CAS  PubMed  Google Scholar 

  29. Smedts HP, Rakhshandehroo M, Verkleij-Hagoort AC, de Vries JH, Ottenkamp J, Steegers EA et al (2008) Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects. Eur J Nutr 47:357–365. https://doi.org/10.1007/s00394-008-0735-6

    Article  CAS  PubMed  Google Scholar 

  30. Torfs CP, Lam PK, Schaffer DM, Brand RJ (1998) Association between mothers’ nutrient intake and their offspring’s risk of gastroschisis. Teratology 58:241–250. https://doi.org/10.1002/(SICI)1096-9926(199812)58:6%3c241::AID-TERA5%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  31. Yang W, Shaw GM, Carmichael SL, Rasmussen SA, Waller DK, Pober BR et al (2008) Nutrient intakes in women and congenital diaphragmatic hernia in their offspring. Birth Defects Res A Clin Mol Teratol 82:131–138. https://doi.org/10.1002/bdra.20436

    Article  CAS  PubMed  Google Scholar 

  32. Shaw GM, Todoroff K, Schaffer DM, Selvin S (1999) Periconceptional nutrient intake and risk for neural tube defect-affected pregnancies. Epidemiology 10:711–716

    Article  CAS  PubMed  Google Scholar 

  33. Shaw GM, Carmichael SL, Yang W, Lammer EJ (2010) Periconceptional nutrient intakes and risks of conotruncal heart defects. Birth Defects Res A Clin Mol Teratol 88:144–151. https://doi.org/10.1002/bdra.20648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wallenstein MB, Shaw GM, Yang W, Carmichael SL (2013) Periconceptional nutrient intakes and risks of orofacial clefts in California. Pediatr Res 74:457–465. https://doi.org/10.1038/pr.2013.115

    Article  CAS  PubMed  Google Scholar 

  35. Pitt DB, Samson PE (1961) Congenital malformations and maternal diet. Australas Ann Med 10:268–274. https://doi.org/10.1111/imj.1961.10.4.268

    Article  CAS  PubMed  Google Scholar 

  36. Ibrahim SA, Al-Halim OA, Samy MA, Mohamadin AM (2013) Maternal nutritional status and the risk of birth defects among Saudi women. Nutrafoods 12:81–88. https://doi.org/10.1007/s13749-012-0066-3

    Article  CAS  Google Scholar 

  37. Chandler AL, Hobbs CA, Mosley BS, Berry RJ, Canfield MA, Qi YP et al (2012) Neural tube defects and maternal intake of micronutrients related to one-carbon metabolism or antioxidant activity. Birth Defects Res A Clin Mol Teratol 94:864–874. https://doi.org/10.1002/bdra.23068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cuny H, Rapadas M, Gereis J, Martin EM, Kirk RB, Shi H et al (2020) NAD deficiency due to environmental factors or gene–environment interactions causes congenital malformations and miscarriage in mice. Proc Natl Acad Sci USA 117:3738–3747. https://doi.org/10.1073/pnas.1916588117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Preiss J, Handler P (1958) Biosynthesis of diphosphopyridine nucleotide: I. Identification of intermediates. J Biol Chem 233:488–492

    Article  CAS  PubMed  Google Scholar 

  40. Satoh MS, Lindahl T (1992) Role of poly (ADP-ribose) formation in DNA repair. Nature 356:356–358. https://doi.org/10.1038/356356a0

    Article  CAS  PubMed  Google Scholar 

  41. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204. https://doi.org/10.1038/nrc2342

    Article  CAS  PubMed  Google Scholar 

  42. Miao YL, Williams CJ (2012) Calcium signaling in mammalian egg activation and embryo development: influence of subcellular localization. Mol Reprod Dev 79:742–756. https://doi.org/10.1002/mrd.22078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nebel M, Schwoerer AP, Warszta D, Siebrands CC, Limbrock AC, Swarbrick JM et al (2013) Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling and arrhythmias in the heart evoked by β-adrenergic stimulation. J Biol Chem 288:16017–16030. https://doi.org/10.1074/jbc.M112.441246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang F, Nguyen M, Qin FX, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–514. https://doi.org/10.1111/j.1474-9726.2007.00304.x

    Article  CAS  PubMed  Google Scholar 

  45. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell 136:62–74. https://doi.org/10.1016/j.cell.2008.10.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380. https://doi.org/10.1038/sj.emboj.7600244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE (2008) SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2:241–251. https://doi.org/10.1016/j.stem.2008.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barral A, Rollan I, Sanchez-Iranzo H, Jawaid W, Badia-Careaga C, Menchero S (2019) Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biol Open. https://doi.org/10.1242/bio.046367

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kafi M, Ashrafi M, Azari M, Jandarroodi B, Abouhamzeh B, Asl AR (2019) Niacin improves maturation and cryo-tolerance of bovine in vitro matured oocytes: an experimental study. Int J Reprod Biomed 17:621. https://doi.org/10.18502/ijrm.v17i9.5096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Almubarak AM, Kim E, Yu IJ, Jeon Y (2021) Supplementation with Niacin during in vitro maturation improves the quality of porcine embryos. Theriogenology 169:36–46. https://doi.org/10.1016/j.theriogenology.2021.04.005

    Article  CAS  PubMed  Google Scholar 

  51. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academy Press, Washington, DC

    Google Scholar 

  52. Block G, Woods M, Potosky A, Clifford C (1990) Validation of a self-administered diet history questionnaire using multiple diet records. J Clin Epidemiol 43:1327–1335. https://doi.org/10.1016/0895-4356(90)90099-b

    Article  CAS  PubMed  Google Scholar 

  53. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J et al (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122:51–65. https://doi.org/10.1093/oxfordjournals.aje.a114086

    Article  CAS  PubMed  Google Scholar 

  54. Caan BJ, Slattery ML, Potter J, Quesenberry CP Jr, Coates AO, Schaffer DM (1998) Comparison of the Block and the Willett self-administered semiquantitative food frequency questionnaires with an interviewer-administered dietary history. Am J Epidemiol 148:1137–1147. https://doi.org/10.1093/oxfordjournals.aje.a009598

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MNK, DI and RMI contributed to the development of the study design. LR performed the search strategies. SP, RMI, KR, and ML piloted the data extraction form and performed risk-of-bias assessment. SP, MNK and RMI contributed to the preparation of the manuscript. All authors read and reviewed the final manuscript.

Corresponding author

Correspondence to Md. Nazmul Karim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palawaththa, S., Islam, R.M., Illic, D. et al. Effect of maternal dietary niacin intake on congenital anomalies: a systematic review and meta-analysis. Eur J Nutr 61, 1133–1142 (2022). https://doi.org/10.1007/s00394-021-02731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02731-9

Keywords

Navigation