Skip to main content
Log in

Emerging cardioprotective mechanisms of vitamin B6: a narrative review

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Although overt vitamin B6 deficiency is rare, marginal vitamin B6 deficiency is frequent and occurs in a consistent proportion of the population. The marginal vitamin B6 deficiency appears to relate to an increased risk of inflammation-related diseases, such as cardiovascular diseases and cancers. Of all the cardiovascular diseases, heart failure is a complex clinical syndrome associated with a high mortality rate. So far, information regarding the cardioprotective mechanisms of vitamin B6 has been limited. Meanwhile, recent studies have revealed that vitamin B6 treatment increases cardiac levels of imidazole dipeptides (e.g., carnosine, anserine, and homocarnosine), histamine, and γ-aminobutyric acid (GABA) and suppresses P2X7 receptor-mediated NLRP3 inflammasome. These modulations may imply potential cardioprotective mechanisms of vitamin B6. These modulations may also be involved in the underlying mechanisms through which vitamin B6 suppresses oxidative stress and inflammation. This review provides an up-to-date evaluation of our current understanding of the cardioprotective mechanisms of vitamin B6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morris MS, Picciano MF, Jacques PF, Selhub J (2008) Plasma pyridoxal 5’-phosphate in the US population: the National health and nutrition examination survey, 2003–2004. Am J Clin Nutr 87:1446–1454. https://doi.org/10.1093/ajcn/87.5.1446

    Article  CAS  PubMed  Google Scholar 

  2. Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P (2012) Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br J Nutr 108:692–698. https://doi.org/10.1017/S0007114512001808

    Article  CAS  PubMed  Google Scholar 

  3. Ho C-L, Quay TAW, Devlin AM, Lamers Y (2016) Prevalence and predictors of low vitamin B6 status in healthy young adult women in metro vancouver. Nutrients 8:538. https://doi.org/10.3390/nu8090538

    Article  CAS  PubMed Central  Google Scholar 

  4. Hellmann H, Mooney S (2010) Vitamin B6: A Molecule for Human Health? Molecules 15:442–1459. https://doi.org/10.3390/molecules15010442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang P, Suda T, Suidasari S, Kumrungsee T, Yanaka N, Kato N (2020) Novel preventive mechanisms of vitamin B6 against inflammation, inflammasome, and chronic diseases. In: Vinood BP, editor. Molecular Nutrition, New York: Academic Press, 283–299. https://doi.org/10.1016/B978-0-12-811907-5.00032-4

  6. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB et al (2013) American heart association statistics c, stroke statistics s. heart disease and stroke statistics–2013 update: a report from the american heart association. Circulation 127:e6–e245. https://doi.org/10.1161/CIR.0b013e31828124ad

    Article  PubMed  Google Scholar 

  7. Pusceddu I, Herrmann W, Kleber ME, Scharnagl H, Hoffmann MM, Winklhofer-Roob BM et al (2020) Subclinical inflammation, telomere shortening, homocysteine, vitamin B6, and mortality: the Ludwigshafen Risk and Cardiovascular Health Study. Eur J Nutr 59:1399–1411. https://doi.org/10.1007/s00394-019-01993-8

    Article  CAS  PubMed  Google Scholar 

  8. Minović I, Kieneker LM, Gansevoort RT, Eggersdorfer M, Touw DJ, Voerman AJ et al (2020) Vitamin B6, inflammation, and cardiovascular outcome in a population-based cohort: the prevention of renal and vascular end-stage disease (PREVEND) study. Nutrients 12:2711. https://doi.org/10.3390/nu12092711

    Article  CAS  PubMed Central  Google Scholar 

  9. Jeon J, Park K (2019) Dietary Vitamin B6 intake associated with a decreased risk of cardiovascular disease: a prospective cohort study. Nutrients 11:1484. https://doi.org/10.3390/nu11071484

    Article  CAS  PubMed Central  Google Scholar 

  10. Zhao L-G, Shu X-O, Li H-L, Gao J, Han L-H, Wang J et al (2019) Prospective cohort studies of dietary vitamin B6 intake and risk of cause-specific mortality. Clin Nutr 38:1180e–1187e. https://doi.org/10.1016/j.clnu.2018.04.016

    Article  CAS  Google Scholar 

  11. Jayedi A, Zargar MS (2019) Intake of vitamin B6, folate, and vitamin B12 and risk of coronary heart disease: a systematic review and dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 59:2697–2707. https://doi.org/10.1080/10408398.2018.1511967

    Article  CAS  PubMed  Google Scholar 

  12. Jenkins DJ, Spence JD, Giovannucci EL, Kim YI, Josse R, Vieth R et al (2018) Supplemental vitamins and minerals for CVD prevention and treatment. J Am Coll Cardiol 71:2570–2584. https://doi.org/10.1016/j.jacc.2018.04.020

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Choi J, Kwon SY, McEvoy JW, Blaha MJ, Blumenthal RS et al (2018) Association of multivitamin and mineral supplementation and risk of cardiovascular disease. a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 11:e004224. https://doi.org/10.1161/CIRCOUTCOMES.117.004224

    Article  PubMed  Google Scholar 

  14. Tardif JC, Carrier M, Kandzari DE, Emery R, Cote R, Heinonen T et al (2007) Effects of pyridoxal-5’-phosphate (MC-1) in patients undergoing high-risk coronary artery bypass surgery: results of the MEND-CABG randomized study. J Thorac Cardiovasc Surg 133:1604–1611. https://doi.org/10.1016/j.jtcvs.2007.01.049

    Article  CAS  PubMed  Google Scholar 

  15. Dhalla NS, Takeda S, Elimban V (2013) Mechanisms of the beneficial effects of vitamin B6 and pyridoxal 5’-phosphate on cardiac performance in ischemic heart disease. Clin Chem Lab Med 51:535–543. https://doi.org/10.1515/cclm-2012-0553

    Article  CAS  PubMed  Google Scholar 

  16. Paganelli F, Mottola G, Fromonot J, Marlinge M, Deharo P, Guieu R et al (2021) Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int J Mol Sci 22:1690. https://doi.org/10.3390/ijms22041690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ubbink JB, van der Merwe A, Delport R, Allen RH, Stabler SP, Riezler R et al (1996) The effect of a subnormal vitamin B-6 status on homocysteine metabolism. J Clin Invest 98:177–184. https://doi.org/10.1172/JCI118763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen J, Lai C-Q, Mattei J, Ordovas JM, Tucker KL (2010) Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: the Boston Puerto Rican Health Study. Am J Clin Nutr 91:337–342. https://doi.org/10.3945/ajcn.2009.28571

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Liu D, Song P, Zou MH (2015) Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front Biosci 20:1116–1143. https://doi.org/10.2741/4363

    Article  CAS  Google Scholar 

  20. Yanaka N, Koyama TA, Komatsu S, Nakamura E, Kanda M, Kato N (2005) Vitamin B6 suppresses NF-kappaB activation in LPS-stimulated mouse macrophages. Int J Mol Med 16:1071–1075. https://doi.org/10.3892/ijmm.16.6.1071

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Tsuchiya K, Kinoshita T, Kushiyama H, Suidasari S, Hatakeyama M et al (2016) Vitamin B6 prevents IL-1 beta protein production by inhibiting NLRP3 inflammasome activation. J Biol Chem 291:24517–24527. https://doi.org/10.1074/jbc.M116.743815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen J, Lai C, Mattei J, Ordovas JM, Tucker KL (2009) Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: the Boston Puerto Rican Health Study. Am J Clin Nutr 91:337–342. https://doi.org/10.3945/ajcn.2009.28571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuwahara K, Nanri A, Pham NM, Kurotani K, Kume A, Sato M et al (2013) Serum vitamin B6, folate, and homocysteine concentrations and oxidative DNA damage in Japanese men and women. Nutrition 29:1219–1223. https://doi.org/10.1016/j.nut.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  24. Matxain JM, Padro D, Ristilä M, Strid A, Eriksson LA (2009) Evidence of high OH radical quenching efficiency by vitamin B6. J Phys Chem B 113:9629–9632. https://doi.org/10.1021/jp903023c

    Article  CAS  PubMed  Google Scholar 

  25. Mahfouz MM, Zhou SQ, Kummerow FA (2009) Vitamin B6 compounds are capable of reducing the superoxide radical and lipid peroxide levels induced by H2O2 in vascular endothelial cells in culture. Inter J Vit Nutr Res 79:218–229. https://doi.org/10.1024/0300-9831.79.4.218

    Article  CAS  Google Scholar 

  26. Kumrungsee T, Nirmagustina DE, Arima T, Onishi K, Sato K, Kato N et al (2019) Novel metabolic disturbances in marginal vitamin B6-deficient rat heart. J Nutr Biochem 65:26–34. https://doi.org/10.1016/j.jnutbio.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Suidasari S, Hasegawa T, Yanaka N, Kato N (2015) Dietary supplemental vitamin B6 increases carnosine and anserine concentrations in the heart of rats. Springerplus 4:280. https://doi.org/10.1186/s40064-015-1074-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suidasari S, Stautemas J, Uragami S, Yanaka N, Derave W, Kato N (2016) Carnosine content in skeletal muscle is dependent on Vitamin B6 status in rats. Front Nutr 2:39. https://doi.org/10.3389/fnut.2015.00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lombardi C, Carubelli V, Lazzarini V, Vizzardi E, Bordonali T, Ciccarese C et al (2015) Effects of oral administration of orodispersible levo-carnosine on quality of life and exercise performance in patients with chronic heart failure. Nutrition 31:72–78. https://doi.org/10.1016/j.nut.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  30. Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845. https://doi.org/10.1152/physrev.00039.2012

    Article  CAS  PubMed  Google Scholar 

  31. Hipkiss AR (2009) Carnosine and its possible roles in nutrition and health. Adv Food Nutr Res 57:87–154. https://doi.org/10.1016/S1043-4526(09)57003-9

    Article  CAS  PubMed  Google Scholar 

  32. Attanà P, Lazzeri C, Picariello C, Dini CS, Gensini GF, Valente S (2012) Lactate and lactate clearance in acute cardiac care patients. Eur Heart J Acute Cardiovasc Care 1:115–121. https://doi.org/10.1177/2048872612451168

    Article  PubMed  PubMed Central  Google Scholar 

  33. Evran B, KarpuzoÊlu H, Develi S, Kalaz EB, Soluk-TekkeÎin M, Olgaç V et al (2014) Effects of carnosine on prooxidant-antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacol Rep 66:81–86. https://doi.org/10.1016/j.pharep.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  34. Zhao J, Posa DK, Kumar V, Hoetker D, Kumar A, Ganesan S et al (2019) Carnosine protects cardiac myocytes against lipid peroxidation products. Amino Acids 51:123–138. https://doi.org/10.1007/s00726-018-2676-6

    Article  CAS  PubMed  Google Scholar 

  35. Zhao J, Conklin DJ, Guo Y, Zhang X, Obal D, Guo L et al (2020) Cardiospecific Overexpression of ATPGD1 (Carnosine Synthase) Increases Histidine Dipeptide Levels and Prevents Myocardial Ischemia Reperfusion Injury. J Am Heart Assoc 9:e015222. https://doi.org/10.1161/JAHA.119.015222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fresta CG, Fidilio A, Lazzarino G, Musso N, Grasso M, Merlo S et al (2020) Modulation of pro-oxidant and pro-inflammatory activities of m1 macrophages by the natural dipeptide carnosine. Int J Mol Sci 21:776. https://doi.org/10.3390/ijms21030776

    Article  CAS  PubMed Central  Google Scholar 

  37. Tucker WJ, Haykowsky MJ, Seo Y, Stehling E, Forman DE (2018) Impaired exercise tolerance in heart failure: role of skeletal muscle morphology and function. Curr Heart Fail Rep 15:323–331. https://doi.org/10.1007/s11897-018-0408-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Suzuki T, Palus S, Springer J (2018) Skeletal muscle wasting in chronic heart failure. ESC Heart Failure 5:1099–1107. https://doi.org/10.1002/ehf2.12387

    Article  PubMed  PubMed Central  Google Scholar 

  39. Springer J, Springer J-I, Anker SD (2017) Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Heart Failure 4:492–498. https://doi.org/10.1002/ehf2.12237

    Article  PubMed  PubMed Central  Google Scholar 

  40. Curcio F, Testa G, Liguori I, Papillo M, Flocco V, Panicara V et al (2020) Sarcopenia and Heart Failure. Nutrients 12:211. https://doi.org/10.3390/nu12010211

    Article  PubMed Central  Google Scholar 

  41. Ganapathy A, Nieves JW (2020) Nutrition and sarcopenia—what do we know? Nutrients 12:1755. https://doi.org/10.3390/nu12061755

    Article  CAS  PubMed Central  Google Scholar 

  42. Suidasari S, Uragami S, Yanaka N, Kato N (2017) Dietary vitamin B6 modulates the gene expression of myokines, Nrf2-related factors, myogenin and HSP60 in the skeletal muscle of rats. Exp Ther Med 14:3239–3246. https://doi.org/10.3892/etm.2017.4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar A, Kumar Y, Sevak JK, Kumar S, Kumar N, Gopinath SD (2020) Metabolomic analysis of primary human skeletal muscle cells during myogenic progression. Sci Rep 10:11824. https://doi.org/10.1038/s41598-020-68796-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Courten B, Kurdiova T, de Courten MP, Belan V, Everaert I, Vician M et al (2015) Muscle carnosine is associated with cardiometabolic risk factors in humans. PLoS One 10:e0138707. https://doi.org/10.1371/journal.pone.0138707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flancbaum L, Fitzpatrick JC, Brotman DN, Marcoux AM, Kasziba E, Fisher H (1990) The presence and significance of carnosine in histamine-containing tissues of several mammalian species. Agents Actions 31:190–196. https://doi.org/10.1007/BF01997607

    Article  CAS  PubMed  Google Scholar 

  46. Deng L, Hong T, Lin J, Ding S, Huang Z, Chen J et al (2015) Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis. Sci Rep 5:13131. https://doi.org/10.1038/srep13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Noguchi K, Ishida J, Kim J-D, Muromachi N, Kako K, Mizukami H et al (2020) Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci 117:3150–3156. https://doi.org/10.1073/pnas.1909124117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li L, Li G, Sheng S, Yin D (2005) Substantial reaction between histamine and malondialdehyde: a new observation of carbonyl stress. Neuro Endocrinol Lett 26:799–805

    PubMed  Google Scholar 

  49. Deng Y, Wang W, Yu P, Xi Z, Xu L, Li X et al (2013) Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo. Nanoscale Res Lett 8:190. https://doi.org/10.1186/1556-276X-8-190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han D, Kim HY, Lee HJ, Shim I, Hahm DH (2007) Wound healing activity of gamma-aminobutyric acid (GABA) in rats. J Microbiol Biotechnol 17:1661–1669

    CAS  PubMed  Google Scholar 

  51. Chen C, Zhou X, He J, Xie Z, Xia S, Lu G (2019) The roles of GABA in ischemia-reperfusion injury in the central nervous system and peripheral organs. Oxid Med Cell Longev 2019:4028394. https://doi.org/10.1155/2019/4028394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bayoumi RA, Kirwan JR, Smith WRD (1972) Some effects of dietary vitamin B6 deficiency and 4-deoxypyridoxine on γ-aminobutyric acid metabolism in rat brain. J Neurochem 19:569–576. https://doi.org/10.1111/j.1471-4159.1972.tb01374.x

    Article  CAS  PubMed  Google Scholar 

  53. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  54. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116. https://doi.org/10.1038/nature18590

    Article  CAS  PubMed  Google Scholar 

  55. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takahashi M (2014) NLRP3 inflammasome as a novel player in myocardial infarction. Int Heart J 55:101–105. https://doi.org/10.1536/ihj.13-388

    Article  CAS  PubMed  Google Scholar 

  57. Butts B, Gary RA, Dunbar SB, Butler J (2015) The importance of NLRP3 inflammasome in heart failure. J Card Fail 21:586–593. https://doi.org/10.1016/j.cardfail.2015.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN et al (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci 108:19725–19730. https://doi.org/10.1073/pnas.1108586108

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA (2001) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc Natl Acad Sci 98:2871–2876. https://doi.org/10.1073/pnas.041611398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H et al (2013) The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1β. Exp Physiol 98:462–472. https://doi.org/10.1113/expphysiol.2012.068338

    Article  CAS  PubMed  Google Scholar 

  61. Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA (2020) Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res 126:1260–1280. https://doi.org/10.1161/CIRCRESAHA.120.315937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sokolova M, Sjaastad I, Louwe MC, Alfsnes K, Aronsen JM, Zhang L et al (2019) NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity. Front Immunol 10:1621. https://doi.org/10.3389/fimmu.2019.01621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. LaRock DL, Sands JS, Ettouati E, Richard M, Bushway PJ, Adler ED et al (2019) Inflammasome inhibition blocks cardiac glycoside cell toxicity. J Biol Chem 294:12846–12854. https://doi.org/10.1074/jbc.RA119.008330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marín-Aguilar F, Lechuga-Vieco AV, Alcocer-Gómez E, Castejón-Vega B, Lucas J, Garrido C et al (2020) NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 19:e13050. https://doi.org/10.1111/acel.13050

    Article  CAS  PubMed  Google Scholar 

  65. Toldo S, Abbate A (2018) The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol 15:203–214. https://doi.org/10.1038/nrcardio.2017.161

    Article  CAS  PubMed  Google Scholar 

  66. Lim GB (2018) Heart failure: Macrophages promote cardiac fibrosis and diastolic dysfunction. Nat Rev Cardiol 15:196–197. https://doi.org/10.1038/nrcardio.2018.19

    Article  PubMed  Google Scholar 

  67. Bartlett R, Stokes L, Sluyter R (2014) The P2X7 Receptor Channel: Recent Developments and the Use of P2X7 Antagonists in Models of Disease. Pharmacol Rev 66:638–675. https://doi.org/10.1124/pr.113.008003

    Article  CAS  PubMed  Google Scholar 

  68. Thériault O, Poulin H, Thomas GR, Friesen AD, Al-Shaqha WA, Chahine M (2014) Pyridoxal-5′-phosphate (MC-1), a vitamin B6 derivative, inhibits expressed P2X receptors. Can J Physiol Pharm 92:189–196. https://doi.org/10.1139/cjpp-2013-0404

    Article  CAS  Google Scholar 

  69. Kumrungsee T, Zhang P, Chartkul M, Yanaka N, Kato N (2020) Potential Role of Vitamin B6 in Ameliorating the Severity of COVID-19 and Its Complications. Front Nutr 7:562051. https://doi.org/10.3389/fnut.2020.562051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang J, Wang T, Yu D, Fang X, Fan H, Liu Q et al (2018) l-Homocarnosine attenuates inflammation in cerebral ischemia-reperfusion injury through inhibition of nod-like receptor protein 3 inflammasome. Int J Biol Macromol 118:357–364. https://doi.org/10.1016/j.ijbiomac.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  71. Dai Z, Lu XY, Zhu WL, Liu XQ, Li BY, Song L et al (2020) Carnosine ameliorates age-related dementia via improving mitochondrial dysfunction in SAMP8 mice. Food Funct 1:2489–2497. https://doi.org/10.1039/c9fo02453k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the HIRAKU consortium, Hiroshima University. The authors would like to thank Enago (www.enago.jp) for English language review.

Author information

Authors and Affiliations

Authors

Contributions

Review conception: TK, PZ and NK; literature search: TK, PZ and NK; writing of the manuscript: TK, PZ, NY, TS, and NK.

Corresponding authors

Correspondence to Thanutchaporn Kumrungsee or Norihisa Kato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumrungsee, T., Peipei Zhang, Yanaka, N. et al. Emerging cardioprotective mechanisms of vitamin B6: a narrative review. Eur J Nutr 61, 605–613 (2022). https://doi.org/10.1007/s00394-021-02665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02665-2

Keywords

Navigation