Skip to main content
Log in

Blueberry extract improves redox balance and functional parameters in the right ventricle from rats with pulmonary arterial hypertension

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right ventricle (RV) failure. In this context, oxidative stress is an essential element contributing to PAH’s pathophysiology. Thus, blueberry (BB), which has a high antioxidant capacity, emerges as a natural therapeutic approach in PAH. This work evaluated the effect of BB extract on redox balance in RV in a PAH’s animal model.

Methods

Male Wistar rats (200 ± 20 g) (n = 72) were randomized into eight groups: control (CTR); monocrotaline (MCT); CTR and MCT treated at doses of 50, 100, and 200 mg/kg BB. PAH was induced by administration of MCT (60 mg/kg, intraperitoneal). Rats were treated with BB orally for 5 weeks (2 weeks before monocrotaline and 3 weeks after monocrotaline injection). On day 35, rats were submitted to echocardiography and catheterization, then euthanasia and RV harvesting for biochemical analyses.

Results

RV hypertrophy, observed in the MCT groups, was reduced with BB treatment. MCT elevated RV systolic pressure and pressure/time derivatives, while the intervention with BB decreased these parameters. PAH decreased RV output and pulmonary artery outflow acceleration/ejection time ratio, while increased RV diameters, parameters restored by BB treatment. Animals from the MCT group showed elevated lipid peroxidation and NADPH oxidase activity, outcomes attenuated in animals treated with BB, which also led to increased catalase activity.

Conclusion

Treatment with BB partially mitigated PAH, which could be associated with improvement of RV redox state. Such findings constitute an advance in the investigation of the role of BB extract in chronic progressive cardiovascular diseases that involve the redox balance, such as PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Nicolls MR, Olschewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, Rabinovitch M (2019) Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 53:1801887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vonk Noordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, Kawut SM, Langleben D, Lumens J, Naeije R (2019) Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 53:1801900

    Article  PubMed  PubMed Central  Google Scholar 

  3. Demarco VG, Whaley-Connell AT, Sowers JR, Habibi J, Dellsperger KC (2010) Contribution of oxidative stress to pulmonary arterial hypertension. World J Cardiol 2:316–324

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dos Santos LD, Türck P, de Lima-Seolin BG, Colombo R, Ortiz VD, Bonetto JHP, Campos-Carraro C, Bianchi SE, Belló-Klein A, Bassani VL, Araujo ASR (2017) Pterostilbene reduces oxidative stress, prevents hypertrophy and preserves systolic function of right ventricle in cor pulmonale model. Br J Pharmacol 174:3302–3314

    Article  Google Scholar 

  5. Wang X, Shults NV, Suzuki YJ (2017) Oxidative profiling of the failing right heart in rats with pulmonary hypertension. PLoS ONE 12:e0176887

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mikhael M, Makar C, Wissa A, Le T, Eghbali M, Umar S (2019) Oxidative stress and its implications in the right ventricular remodeling secondary to pulmonary hypertension. Front Physiol 10:1233

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yet SF, Perrella MA, Layne MD, Hsieh CM, Maemura K, Kobzik L, Wiesel P, Christou H, Kourembanas S, Lee ME (1999) Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Investig 103:R23–R29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaumais MC, Ranchoux B, Montani D, Dorfmüller P, Tu L, Lecerf F, Raymond N, Guignabert C, Price L, Simonneau G, Cohen-Kaminsky S, Humbert M, Perros F (2014) N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respir Res 15:65

    Article  PubMed  PubMed Central  Google Scholar 

  9. Türck P, Lacerda DS, Carraro CC, de Lima-Seolin BG, Teixeira RB, Bonetto JHP, Colombo R, Schenkel PC, Belló-Klein A, da Rosa Araujo AS (2018) Trapidil improves hemodynamic, echocardiographic and redox state parameters of right ventricle in monocrotaline-induced pulmonary arterial hypertension model. Biomed Pharmacothererapy 103:182–190

    Article  Google Scholar 

  10. Zimmer A, Teixeira RB, Bonetto JHP, Bahr AC, Türck P, de Castro AL, Campos-Carraro C, Visioli F, Fernandes-Piedras TR, Casali KR, Scassola CMC, Baldo G, Araujo AS, Singal P, Belló-Klein A (2020) Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension. Mol Cell Biochem 464:93–109

    Article  CAS  PubMed  Google Scholar 

  11. Reis GS, Augusto VS, Silveira AP, Jordão AA Jr, Baddini-Martinez J, Poli Neto O, Rodrigues AJ, Evora PR (2013) Oxidative-stress biomarkers in patients with pulmonary hypertension. Pulmonary Circulation 3(4):856–861

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ghasemzadeh N, Patel RS, Eapen DJ, Veledar EA, Kassem H, Manocha P, Khayata M, Zafari AM, Sperling L, Jones DP, Quyyumi AA (2014) Oxidative stress is associated with increased pulmonary artery systolic pressure in humans. Hypertension 63:1270–1275

    Article  CAS  PubMed  Google Scholar 

  13. Sitbon O, Gomberg-Maitland M, Granton J, Lewis MI, Mathai SC, Rainisio M, Stockbridge NL, Wilkins MR, Zamanian RT, Rubin LJ (2019) Clinical trial design and new therapies for pulmonary arterial hypertension. Eur Respir J 53:1801908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frei B (1994) Natural Antioxidants in Human Health and Disease, 1st edn. Academic Press, Boston, Massachusetts

    Google Scholar 

  15. Belló-Klein A, Khaper N, Llesuy S, Vassallo DV, Pantos C (2014) Oxidative stress and antioxidant strategies in cardiovascular disease. Oxidative Med Cellular Longevity 2014:678741

    Article  Google Scholar 

  16. Mangge H, Becker K, Fuchs D, Gostner JM (2014) Antioxidants, inflammation and cardiovascular disease. World J Cardiol 6:462–477

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jain AK, Mehra NK, Swarnakar NK (2015) Role of antioxidants for the treatment of cardiovascular diseases: challenges and opportunities. Curr Pharm Des 21:4441–4455

    Article  CAS  PubMed  Google Scholar 

  18. Basu A, Rhone M, Lyons TJ (2010) Berries: emerging impact on cardiovascular health. Nutr Rev 68:168–177

    Article  PubMed  Google Scholar 

  19. Louis XL, Thandapilly SJ, Kalt W, Vinqvist-Tymchuk M, Aloud BM, Raj P, Yu L, Le H, Netticadan T (2014) Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress. Food Funct 5:1785–1794

    Article  CAS  PubMed  Google Scholar 

  20. Song Y, Huang L, Yu J (2016) Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J Neuroimmunol 301:1–6

    Article  CAS  PubMed  Google Scholar 

  21. Eladwy RA, Mantawy EM, El-Bakly WM, Fares M, Ramadan LA, Azab SS (2018) Mechanistic insights to the cardioprotective effect of blueberry nutraceutical extract in isoprenaline-induced cardiac hypertrophy. Phytomedicine 51:84–93

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Tan D, Shi L, Liu X, Zhang Y, Tong C, Song D, Hou M (2015) Blueberry anthocyanins-enriched extracts attenuate cyclophosphamide-induced cardiac injury. PLoS ONE 10:e0127813

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ahmet I, Spangler E, Shukitt-Hale B, Juhaszova M, Sollott SJ, Joseph JA, Ingram DK, Talan M (2009) Blueberry-enriched diet protects rat heart from ischemic damage. PLoS ONE 4:e5954

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ahmet I, Spangler E, Shukitt-Hale B, Joseph JA, Ingram DK, Talan M (2009) Survival and cardioprotective benefits of long-term blueberry enriched diet in dilated cardiomyopathy following myocardial infarction in rats. PLoS ONE 4:e7975

    Article  PubMed  PubMed Central  Google Scholar 

  25. Türck P, Fraga S, Salvador I, Campos-Carraro C, Lacerda D, Bahr A, Ortiz V, Hickmann A, Koetz M, Belló-Klein A, Henriques A, Agostini F, da Rosa Araujo AS (2020) Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutrition 70:110579

    Article  PubMed  Google Scholar 

  26. Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG (1982) Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol 243:H941–H947

    CAS  PubMed  Google Scholar 

  27. Augustine DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J, Coghlan G, Kaye N, Oxborough D, Robinson S, Sandoval J, Rana BS, Siva A, Nihoyannopoulos P, Howard LS, Fox K, Bhattacharyya S, Sharma V, Steeds RP, Mathew T (2018) Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo Res Practice 5:G11–G24

    Article  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  29. Lebel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the Probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  30. Llesuy SF, Milei J, Gonzalez Flecha BS, Boveris A (1990) Myocardial damage induced by doxorubicins: hydroperoxide-initiated chemiluminescence and morphology. Free Radical Biol Med 8:259–264

    Article  CAS  Google Scholar 

  31. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281:35137–35146

    Article  CAS  PubMed  Google Scholar 

  32. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochemical Journal 134:707–716

    Article  CAS  PubMed Central  Google Scholar 

  33. Marklund SL (1985) Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice, nude mice and normal BALB/c mice. Mutat Res 148:129–134

    Article  CAS  PubMed  Google Scholar 

  34. Mills GC (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229:189–197

    Article  CAS  PubMed  Google Scholar 

  35. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  CAS  PubMed  Google Scholar 

  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  37. Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36:59–66

    CAS  PubMed  Google Scholar 

  38. Galiè N, Humbert M, Vachiery J, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Sanchez MAG, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2015) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 46:903–975

    Article  PubMed  Google Scholar 

  39. Nair AR, Mariappan N, Stull AJ, Francis J (2017) Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct 8:4118–4128

    Article  CAS  PubMed  Google Scholar 

  40. Sun Y, Nemec-Bakk AS, Mallik AU, Bagchi AK, Singal PK, Khaper N (2019) Blueberry extract attenuates doxorubicin-induced damage in H9c2 cardiac cells. Can J Physiol Pharmacol 97:880–884

    Article  CAS  PubMed  Google Scholar 

  41. Von Siebenthal C, Aubert JD, Mitsakis P, Yerly P, Prior JO, Nicod LP (2016) Pulmonary hypertension and indicators of right ventricular function. Front Med (Lausanne) 3:23

    Google Scholar 

  42. Ryan JJ, Huston J, Kutty S, Hatton ND, Bowman L, Tian L, Herr JE, Johri AM, Archer SL (2015) Right ventricular adaptation and failure in pulmonary arterial hypertension. Can J Cardiol 31:391–406

    Article  PubMed  Google Scholar 

  43. Lima-Seolin BG, Colombo R, Bonetto JHP, Teixeira RB, Donatti LM, Casali KR, Godoy AEG, Litvin IE, Schenkel PC, Araujo ASR, Belló-Klein A (2017) Bucindolol improves right ventricle function in rats with pulmonary arterial hypertension through the reversal of autonomic imbalance. Eur J Pharmacol 798:57–65

    Article  PubMed  Google Scholar 

  44. Campos-Carraro C, Türck P, de Lima-Seolin BG, Tavares AMV, Dos Santos LD, Corssac GB, Teixeira RB, Hickmann A, Llesuy S, da Rosa Araujo AS, Belló-Klein A (2018) Copaiba oil attenuates right ventricular remodeling by decreasing myocardial apoptotic signaling in monocrotaline-induced rats. J Cardiovasc Pharmacol 72:214–221

    Article  CAS  PubMed  Google Scholar 

  45. Huang Z, Liu Z, Luo Q, Zhao Z, Zhao Q, Zheng Y, Xi Q, Tang Y (2016) Glycoprotein 130 inhibitor ameliorates monocrotaline-induced pulmonary hypertension in rats. Can J Cardiol 32:1356.e1-1356.e10

    Article  Google Scholar 

  46. Jasińska-Stroschein M, Owczarek J, Sołtysiak U, Orszulak-Michalak D (2016) Rosuvastatin intensifies the beneficial effects of rho-kinase inhibitor in reversal of monocrotaline-induced pulmonary hypertension. Arch Med Sci 2:898–905

    Article  Google Scholar 

  47. Harrison A, Hatton N, Ryan JJ (2015) The right ventricle under pressure: evaluating the adaptive and maladaptive changes in the right ventricle in pulmonary arterial hypertension using echocardiography (2013 Grover Conference series). Pulmonary Cir 5:29–47

    Article  Google Scholar 

  48. Falcão-Pires I, Gonçalves N, Henriques-Coelho T, Moreira-Gonçalves D, Roncon-Albuquerque R Jr, Leite-Moreira AF (2006) Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol-Heart and Cir Physiol 296:H2007–H2014

    Article  Google Scholar 

  49. Vonk Noordegraaf A, Galiè N (2011) The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev 20:243–253

    Article  CAS  PubMed  Google Scholar 

  50. Howard LS, Grapsa J, Dawson D, Bellamy M, Chambers JB, Masani ND, Nihoyannopoulos P, Gibbs JSR (2012) Echocardiographic assessment of pulmonary hypertension: standard operating procedure. Eur Respir Rev 21:239–248

    Article  PubMed  Google Scholar 

  51. Pasierski TJ, Starling RC, Binkley PF, Pearson AC (1999) Echocardiographic evaluation of pulmonary artery distensibility. Chest 103:1080–1083

    Article  Google Scholar 

  52. Naeije R, Manes A (2014) The right ventricle in pulmonary arterial hypertension. Eur Respir Rev 23:476–487

    Article  PubMed  Google Scholar 

  53. Baybutt RC, Molteni A (1999) Dietary beta-carotene protects lung and liver parenchyma of rats treated with monocrotaline. Toxicology 137:69–80

    Article  CAS  PubMed  Google Scholar 

  54. Baybutt RC, Herndon BL, Umbehr J, Mein J, Xue Y, Reppert S, Van Dillen C, Kamal R, Halder A, Molteni A (2007) Effects on cytokines and histology by treatment with the ACE inhibitor captopril and the antioxidant retinoic acid in the monocrotaline model of experimentally induced lung fibrosis. Curr Pharm Des 13:1327–1333

    Article  CAS  PubMed  Google Scholar 

  55. Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16:24673–24706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biol Med 52:1–6

    Article  CAS  Google Scholar 

  58. Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N (2013) Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 19:2213–2231

    Article  CAS  PubMed  Google Scholar 

  59. Huetsch JC, Suresh K, Shimoda LA (2019) Regulation of Smooth Muscle Cell Proliferation by NADPH Oxidases in Pulmonary Hypertension. Antioxidants (Basel) 8.

  60. VanWinkle WB, Snuggs M, Miller JC, Buja LM (1994) Cytoskeletal alterations in cultured cardiomyocytes following exposure to the lipid peroxidation product, 4-hydroxynonenal. Cell Motil Cytoskelet 28:119–134

    Article  CAS  Google Scholar 

  61. Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM (2013) Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 3:1011–1034

    Article  PubMed  PubMed Central  Google Scholar 

  62. Souza-Rabbo MP, Silva LF, Auzani JA, Picoral M, Khaper N, Belló-Klein A (2008) Effects of a chronic exercise training protocol on oxidative stress and right ventricular hypertrophy in monocrotaline-treated rats. Clin Exp Pharmacol Physiol 35:944–948

    Article  CAS  PubMed  Google Scholar 

  63. Hessel MHM, Steendijk P, den Adel B, Schutte CI, van der Laarse A (2006) Characterization of right ventricular function after monocrotaline-inducedpulmonary hypertension in the intact rat. Am J Physiol-Heart and Cir Physiol 291:H2424–H2430

    Article  CAS  Google Scholar 

  64. Pan LC, Wilson DW, Lame MW, Jones AD, Segall HJ (1993) Cor pulmonale is caused by monocrotaline and dehydromonocrotaline, but not by glutathione or cysteine conjugates of dihydropyrrolizine. Toxicol Appl Pharmacol 118:87–97

    Article  CAS  PubMed  Google Scholar 

  65. Kay JM, Suyama KL, Keane PM (1982) Failure to show decrease in small pulmonary blood vessels in rats with experimental pulmonary hypertension. Thorax 37:927–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Christou H, Morita T, Hsieh CM, Koike H, Arkonac B, Perrella MA, Kourembanas S (2000) Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 86:1224–1229

    Article  CAS  PubMed  Google Scholar 

  67. Adesina SE, Wade BE, Bijli KM, Kang BY, Williams CR, Ma J, Go YM, Hart CM, Sutliff RL (2017) Hypoxia inhibits expression and function of mitochondrial thioredoxin 2 to promote pulmonary hypertension. Am J Physiol-Lung Cellular Mol Physiol 312:L599–L608

    Article  Google Scholar 

  68. Pena E, Brito J, Alam SE, Siques P (2020) Oxidative stress, kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia. Int J Mol Sci 21:6421

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work received financial support from the following Brazilian development agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Türck.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

Animal studies were performed according to “Guide for the Care and Use of Laboratory Animals (8th edition, 2011) of the National Research Council of the National Academies (National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 2011) and approved by Ethical Committee for Animal Experimentation from Federal University of Rio Grande do Sul (project number #32192).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türck, P., Salvador, I.S., Campos-Carraro, C. et al. Blueberry extract improves redox balance and functional parameters in the right ventricle from rats with pulmonary arterial hypertension. Eur J Nutr 61, 373–386 (2022). https://doi.org/10.1007/s00394-021-02642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02642-9

Keywords

Navigation