Skip to main content

Advertisement

Log in

Factors associated with serum ferritin levels and iron excess: results from the EPIC-EurGast study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Excess iron is involved in the development of non-communicable diseases such as cancer, type 2 diabetes and cardiovascular conditions. We aimed to describe the prevalence of excess iron and its determinants in healthy European adults.

Methods

Sociodemographic, lifestyle, iron status, dietary information, and HFE genotyping were obtained from controls from the nested case–control study EPIC-EurGast study. High sensitivity C-reactive protein (hsCRP) was measured to address possible systemic inflammation. Descriptive and multivariate analyses were used to assess iron status and its determinants.

Results

Out of the 828 participants (median age: 58.7 years), 43% were females. Median serum ferritin and prevalence of excess iron were 143.7 µg/L and 35.2% in males, respectively, and 77 µg/L and 20% in females, both increasing with latitude across Europe. Prevalence of HFE C282Y mutation was significantly higher in Northern and Central Europe (~ 11%) than in the South (5%). Overweight/obesity, age, and daily alcohol and heme iron intake were independent determinants for iron status, with sex differences even after excluding participants with hsCRP > 5 mg/L. Obese males showed a greater consumption of alcohol, total and red meat, and heme iron, compared with those normal weight.

Conclusion

Obesity, higher alcohol and heme iron consumption were the main risk factors for excess iron in males while only age was associated with iron overload in females. Weight control and promoting healthy lifestyle may help prevent iron overload, especially in obese people. Further research is needed to clarify determinants of excess iron in the healthy adult population, helping to reduce the associated comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Arija V, Ribot B, Aranda N (2013) Prevalence of iron deficiency states and risk of haemoconcentration during pregnancy according to initial iron stores and iron supplementation. Public Health Nutr 16:1371–1378. https://doi.org/10.1017/S1368980013000608

    Article  PubMed  Google Scholar 

  2. Peña-Rosas JP, Viteri FE (2009) Effects and safety of preventive oral iron or iron+folic acid supplementation for women during pregnancy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004736.pub3

    Article  PubMed  Google Scholar 

  3. Arija V, Fernández-Cao JC, Basora J et al (2014) Excess body iron and the risk of type 2 diabetes mellitus: a nested case-control in the PREDIMED (PREvention with MEDiterranean Diet) study. Br J Nutr 112:1896–1904. https://doi.org/10.1017/S0007114514002852

    Article  CAS  PubMed  Google Scholar 

  4. Meidtner K, Podmore C, Kröger J et al (2018) Interaction of dietary and genetic factors influencing body iron status and risk of type 2 diabetes within the EPIC-InterAct study. Diabetes Care 41:277–285. https://doi.org/10.2337/dc17-1080

    Article  CAS  PubMed  Google Scholar 

  5. Podmore C, Meidtner K, Schulze MB et al (2016) Association of multiple biomarkers of iron metabolism and type 2 diabetes: The EPIC-Inter act study. Diabetes Care 39:572–581. https://doi.org/10.2337/dc15-0257

    Article  CAS  PubMed  Google Scholar 

  6. Jiang L, Wang K, Lo K et al (2019) Sex-specific association of circulating ferritin level and risk of type 2 diabetes: a dose-response meta-analysis of prospective studies. J Clin Endocrinol Metab 104:4539–4551. https://doi.org/10.1210/jc.2019-00495

    Article  PubMed  Google Scholar 

  7. Pourmoghaddas A, Sanei H, Garakyaraghi M et al (2014) The relation between body iron store and ferritin, and coronary artery disease. ARYA Atheroscler 10:32–36

    PubMed  PubMed Central  Google Scholar 

  8. Silvestre OM, Gonçalves A, Nadruz W et al (2017) Ferritin levels and risk of heart failure—the atherosclerosis risk in communities study. Eur J Heart Fail 19:340–347. https://doi.org/10.1002/ejhf.701

    Article  CAS  PubMed  Google Scholar 

  9. Chang VC, Cotterchio M, Khoo E (2019) Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer 19:543. https://doi.org/10.1186/s12885-019-5642-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100:9–16. https://doi.org/10.1111/j.1349-7006.2008.01001.x

    Article  CAS  PubMed  Google Scholar 

  11. Cloonan SM, Mumby S, Adcock IM et al (2017) The iron-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 196:1103–1112. https://doi.org/10.1164/rccm.201702-0311PP

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gono T, Kawaguchi Y, Hara M et al (2010) Increased ferritin predicts development and severity of acute interstitial lung disease as a complication of dermatomyositis. Rheumatology 49:1354–1360. https://doi.org/10.1093/rheumatology/keq073

    Article  CAS  PubMed  Google Scholar 

  13. Fonseca-Nunes A, Agudo A, Aranda N et al (2015) Body iron status and gastric cancer risk in the EURGAST study. Int J Cancer 137:2904–2914. https://doi.org/10.1002/ijc.29669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knuiman MW, Divitini ML, Olynyk JK et al (2003) Serum ferritin and cardiovascular disease: a 17-year follow-up study in Busselton, Western Australia. Am J Epidemiol 158:144–149. https://doi.org/10.1093/aje/kwg121

    Article  CAS  PubMed  Google Scholar 

  15. Barton JC, Edwards CQ, Acton RT (2015) HFE gene: structure, function, mutations, and associated iron abnormalities. Gene 574:179–192. https://doi.org/10.1016/j.gene.2015.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katsarou MS, Papasavva M, Latsi R, Drakoulis N (2019) Hemochromatosis: hereditary hemochromatosis and HFE gene. Vitam Horm 110:201–222. https://doi.org/10.1016/bs.vh.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  17. Merryweather-Clarke AT, Pointon JJ, Jouanolle AM et al (2000) Geography of HFE C282Y and H63D mutations. Genet Test 4:183–198. https://doi.org/10.1089/10906570050114902

    Article  CAS  PubMed  Google Scholar 

  18. Lucotte G, Dieterlen F (2003) A european allele map of the C282Y mutation of hemochromatosis: celtic versus viking origin of the mutation? Blood Cells Mol Dis 31:262–267. https://doi.org/10.1016/S1079-9796(03)00133-5

    Article  CAS  PubMed  Google Scholar 

  19. Crownover B, Covey C (2013) Hereditary hemochromatosis. Am Fam Physician 87:183–190. https://doi.org/10.1179/1024533213Z.000000000222

    Article  PubMed  Google Scholar 

  20. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.

  21. Mura C, Le Gac G, Raguénes O et al (2000) Relation between HFE mutations and mild iron-overload expression. Mol Genet Metab 69:295–301. https://doi.org/10.1006/mgme.2000.2981

    Article  CAS  PubMed  Google Scholar 

  22. Worwood M (2007) Indicators of the iron status of populations: ferritin. World Health Organization, Centers for Disease Control and Prevention. https://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107_annex2.pdf?ua=1

  23. Kim H, Shin C, Baik I (2016) associations between lifestyle factors and iron overload in korean adults. Clin Nutr Res 5:270. https://doi.org/10.7762/cnr.2016.5.4.270

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ioannou GN, Dominitz JA, Weiss NS et al (2004) The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia. Gastroenterology 126:1293–1301. https://doi.org/10.1053/j.gastro.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  25. Shattnawi KK, Alomari M, Al-Sheyab N, Bani Salameh A (2018) The relationship between plasma ferritin levels and body mass index among adolescents. Sci Rep 8:15307. https://doi.org/10.1038/s41598-018-33534-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alam F, Memon AS, Fatima SS (2015) Increased body mass index may lead to hyperferritinemia irrespective of body iron stores. Pak J Med Sci 31:1521–1526. https://doi.org/10.12669/pjms.316.7724

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reddy KV, Shastry S, Raturi M, Baliga BP (2020) Impact of regular whole-blood donation on body iron stores. Transfus Med Hemother 47:75–79. https://doi.org/10.1159/000499768

    Article  PubMed  Google Scholar 

  28. Ellulu MS, Patimah I, Khaza’ai H et al (2017) Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 13:851–863. https://doi.org/10.5114/aoms.2016.58928

    Article  CAS  PubMed  Google Scholar 

  29. Elisia I, Lam V, Cho B et al (2020) The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-76556-7

    Article  CAS  Google Scholar 

  30. Burini RC, Anderson E, Durstine JL, Carson JA (2020) Inflammation, physical activity, and chronic disease: an evolutionary perspective. Sport Med Heal Sci 2:1–6. https://doi.org/10.1016/j.smhs.2020.03.004

    Article  Google Scholar 

  31. Hoppe M, Brün B, Larsson MP et al (2013) Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition 29:89–95. https://doi.org/10.1016/j.nut.2012.04.013

    Article  CAS  PubMed  Google Scholar 

  32. Young I, Parker HM, Rangan A et al (2018) Association between haem and non-haem iron intake and serum Ferritin in healthy young women. Nutrients 10:81. https://doi.org/10.3390/nu10010081

    Article  CAS  PubMed Central  Google Scholar 

  33. Jackson J, Williams R, McEvoy M et al (2016) Is higher consumption of animal flesh foods associated with better iron status among adults in developed countries? A systematic review. Nutrients 8:89. https://doi.org/10.3390/nu8020089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams S, Sello CT, Qin GX et al (2018) Does dietary fiber affect the levels of nutritional components after feed formulation? Fibers 6:29. https://doi.org/10.3390/fib6020029

    Article  CAS  Google Scholar 

  35. Riboli E, Hunt KJ, Slimani N et al (2002) European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124. https://doi.org/10.1079/PHN2002394

    Article  CAS  PubMed  Google Scholar 

  36. Italian Minister of Health (2005) Decree of the Italian Minister of Health. Gazz Uff della Repubb Ital 146:5–26. https://www.gazzettaufficiale.it/eli/gu/2005/04/13/85/sg/pdf

  37. Margetts B (1997) European prospective investigation into cancer and nutrition: validity studies on dietary assessment methods. Int J Epidemiol 26(Suppl 1):S1–S5. https://doi.org/10.1093/ije/26.suppl_1.s1

    Article  PubMed  Google Scholar 

  38. Wareham NJ, Jakes RW, Rennie KL et al (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6:407–413. https://doi.org/10.1079/phn2002439

    Article  PubMed  Google Scholar 

  39. Friedenreich C, Cust A, Lahmann PH et al (2007) Physical activity and risk of endometrial cancer: the European prospective investigation into cancer and nutrition. Int J Cancer 121:347–355. https://doi.org/10.1002/ijc.22676

    Article  CAS  PubMed  Google Scholar 

  40. Trichopoulou A, Naska A, Costacou T (2002) Disparities in food habits across Europe. Proc Nutr Soc 61:553–558. https://doi.org/10.1079/pns2002188

    Article  PubMed  Google Scholar 

  41. Rumm-Kreuter D (2001) Comparison of the eating a nd cooking habits of northern Europe and the Mediterranean countries in the past, present and future. Int J Vitam Nutr Res 71:141–148. https://doi.org/10.1024/0300-9831.71.3.141

    Article  CAS  PubMed  Google Scholar 

  42. Reyes C, Pons NA, Reñones CR et al (2020) Association between serum ferritin and acute coronary heart disease: a population-based cohort study. Atherosclerosis 293:69–74. https://doi.org/10.1016/j.atherosclerosis.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  43. Díaz-López A, Iglesias Vázquez L, Pellejà-Millán M et al (2020) Association between iron status and incident type 2. Nutrients 12:3249. https://doi.org/10.3390/nu12113249

    Article  CAS  PubMed Central  Google Scholar 

  44. Mckinnon EJ, Rossi E, Beilby JP et al (2014) Factors that affect serum levels of ferritin in Australian adults and implications for follow-up. Clin Gastroenterol Hepatol 12:101-108.e4. https://doi.org/10.1016/j.cgh.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  45. Ueno Y, Fujita K, Takashina N et al (1991) Studies on the change in the levels of serum ferritin, serum iron and total iron binding capacity caused by aging and sex difference. Rinsho Byori 39:523–530

    CAS  PubMed  Google Scholar 

  46. Yip R (1994) Changes in iron metabolism with age. In: Brock JH, Halliday JW, Pippard MJ, Powell LW (eds) Iron metabolism in health and disease. WB Saunders, London, pp 428–448

    Google Scholar 

  47. Picca A, Mankowski RT, Kamenov G et al (2019) Advanced age is associated with iron dyshomeostasis and mitochondrial DNA damage in human skeletal muscle. Cells 8:1525. https://doi.org/10.3390/cells8121525

    Article  CAS  PubMed Central  Google Scholar 

  48. Xu J, Jia Z, Knutson MD, Leeuwenburgh C (2012) Impaired iron status in aging research. Int J Mol Sci 13(2):2368–2386. https://doi.org/10.3390/ijms13022368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lecube A, Hernández C, Pelegrí D, Simó R (2008) Factors accounting for high ferritin levels in obesity. Int J Obes 32:1665–1669. https://doi.org/10.1038/ijo.2008.154

    Article  CAS  Google Scholar 

  50. Moore Heslin A, O’Donnell A, Buffini M et al (2021) Risk of iron overload in obesity and implications in metabolic health. Nutrients 13:1539. https://doi.org/10.3390/nu13051539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Traversy G, Chaput JP (2015) Alcohol consumption and obesity: an update. Curr Obes Rep 4:122–130. https://doi.org/10.1007/s13679-014-0129-4

    Article  PubMed  PubMed Central  Google Scholar 

  52. McCarty MF (2000) The origins of western obesity: a role for animal protein? Med Hypotheses 54:488–494. https://doi.org/10.1054/mehy.1999.0882

    Article  CAS  PubMed  Google Scholar 

  53. You W, Henneberg M (2016) Meat consumption providing a surplus energy in modern diet contributes to obesity prevalence: an ecological analysis. BMC Nutr 2:1–11. https://doi.org/10.1186/s40795-016-0063-9

    Article  Google Scholar 

  54. Pedersen P, Milman N (2009) Genetic screening for HFE hemochromatosis in 6,020 Danish men: penetrance of C282Y, H63D, and S65C variants. Ann Hematol 88:775–784. https://doi.org/10.1007/s00277-008-0679-1

    Article  CAS  PubMed  Google Scholar 

  55. Whitfield JB, Cullen LM, Jazwinska EC et al (2000) Effects of HFE C282Y and H63D polymorphisms and polygenic background on iron stores in a large community sample of twins. Am J Hum Genet 66:1246–1258. https://doi.org/10.1086/302862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bacon BR, Britton RS (2008) Clinical penetrance of hereditary hemochromatosis. N Engl J Med 25:183–190. https://doi.org/10.1056/nejme078215

    Article  Google Scholar 

  57. Iglesias Vázquez L, Arija V, Aranda N et al (2019) The effectiveness of different doses of iron supplementation and the prenatal determinants of maternal iron status in pregnant spanish women: ECLIPSES study. Nutrients 11:2418. https://doi.org/10.3390/nu11102418

    Article  CAS  PubMed Central  Google Scholar 

  58. Fernandez-Cao JC, Arija V, Aranda N et al (2013) Heme iron intake and risk of new-onset diabetes in a Mediterranean population at high risk of cardiovascular disease: an observational cohort analysis. BMC Public Health 13:1042. https://doi.org/10.1186/1471-2458-13-1042

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hu PJ, Ley SH, Bhupathiraju SN et al (2017) Associations of dietary, lifestyle, and sociodemographic factors with iron status in Chinese adults: a cross-sectional study in the China Health and nutrition survey. Am J Clin Nutr 105:503–512. https://doi.org/10.3945/ajcn.116.136861

    Article  CAS  PubMed  Google Scholar 

  60. Péneau S, Dauchet L, Vergnaud AC et al (2008) Relationship between iron status and dietary fruit and vegetables based on their vitamin C and fiber content. Am J Clin Nutr 87:1298–1305. https://doi.org/10.1093/ajcn/87.5.1298

    Article  PubMed  Google Scholar 

  61. Harrison-Findik DD (2007) Role of alcohol in the regulation of iron metabolism. World J Gastroenterol 13:4925–4930. https://doi.org/10.3748/wjg.v13.i37.4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Milman N, Kirchhoff M (1996) Relationship between serum ferritin, alcohol intake, and social status in 2235 Danish men and women. Ann Hematol 72:145–151. https://doi.org/10.1007/s002770050153

    Article  CAS  PubMed  Google Scholar 

  63. White A, Nicolas G, Foster K (1993) Health Survey for England 1991. National Centre for Social Research, UK Data Archive. GB 1956 HSE

  64. Whitfield JB, Zhu G, Heath AC et al (2001) Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol Clin Exp Res 25:1037–1045. https://doi.org/10.1111/j.1530-0277.2001.tb02314.x

    Article  CAS  PubMed  Google Scholar 

  65. Mehta K, Farnaud S, Patel VB (2016) Molecular effects of alcohol on iron metabolism. In: Patel VB (ed) Molecular aspects of alcohol and nutrition: a the volume in the molecular nutrition series. Elsevier Inc., Amsterdam, pp 355–368

    Chapter  Google Scholar 

  66. Ghio AJ, Hilborn ED, Stonehuerner JG et al (2008) Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med 178:1130–1138. https://doi.org/10.1164/rccm.200802-334OC

    Article  CAS  PubMed  Google Scholar 

  67. Lee CH, Goag EK, Lee SH et al (2016) Association of serum ferritin levels with smoking and lung function in the Korean adult population: analysis of the fourth and fifth Korean National Health and Nutrition Examination Survey. Int J Chron Obs Pulmon Dis 11:3001–3006. https://doi.org/10.2147/COPD.S116982

    Article  CAS  Google Scholar 

  68. Zhang WZ, Butler JJ, Cloonan SM (2020) Smoking-induced iron dysregulation in the lung. Free Radic Biol Med 133:238–247. https://doi.org/10.1016/j.freeradbiomed.2018.07.024

    Article  CAS  Google Scholar 

  69. Munasinghe LL, Ekwaru JP, Mastroeni MF et al (2019) The association of serum 25-hydroxyvitamin D concentrations with elevated serum ferritin levels in normal weight, overweight and obese Canadians. PLoS ONE 14:e0213260. https://doi.org/10.1371/journal.pone.0213260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Broderstad A, Smith-Sivertsen T, Marie Dahl I et al (2006) Serum levels of iron in Sør-Varanger northern Norway—an iron mining municipality. Int J Circumpolar Health 65:432–442. https://doi.org/10.3402/ijch.v65i5.18131

    Article  PubMed  Google Scholar 

  71. McClung JP, Martini S, Murphy NE et al (2013) Effects of a 7-day military training exercise on inflammatory biomarkers, serum hepcidin, and iron status. Nutr J 12:141. https://doi.org/10.1186/1475-2891-12-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Skarpańska-Stejnborn A, Basta P, Trzeciak J, Szcześniak-Pilaczyńska Ł (2015) Effect of intense physical exercise on hepcidin levels and selected parameters of iron metabolism in rowing athletes. Eur J Appl Physiol 115:345–351. https://doi.org/10.1007/s00421-014-3018-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the European Commission (DG-SANCO) and the International Agency for Research on Cancer for the financial support to the coordination of EPIC study. The national cohorts are supported by: Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), the National Institute for Public Health and the Environment–Bilthoven (RIVM), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the catal Institute of Oncology (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (UK). We thank the CERCA Programme/Generalitat de Catalunya for institutional support.

Funding

This study has been funded by Instituto de Salud Carlos III (project ref. PI11/1486), by European Regional Development Fund through the project “A way to build Europe”, and by the World Cancer Research Fund (Grant ref. 2011/428).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victoria Arija or Paula Jakszyn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethical Committees at the International Agency for Research on Cancer (IARC) and in each of the EPIC centres. It has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Consent to participate

All participants gave their informed consent prior to their inclusion in the study.

Consent for publication

Not applicable.

Disclaimer

Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias-Vázquez, L., Arija, V., Aranda, N. et al. Factors associated with serum ferritin levels and iron excess: results from the EPIC-EurGast study. Eur J Nutr 61, 101–114 (2022). https://doi.org/10.1007/s00394-021-02625-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02625-w

Keywords

Navigation