Skip to main content
Log in

A metabolome and microbiome wide association study of healthy eating index points to the mechanisms linking dietary pattern and metabolic status

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Healthy eating index (HEI), a measure of diet quality, associates with metabolic health outcomes; however, the molecular basis is unclear. We conducted a multi-omic study to examine whether HEI associates with the circulatory and gut metabolome and investigated the gut microbiome–HEI interaction on circulating and gut metabolites.

Methods

Through a cross-sectional study, we evaluated diet quality in healthy individuals [the ABO Glycoproteomics in Platelets and Endothelial Cells (ABO) Study, n = 73], metabolites (measured at Metabolon Inc.) in plasma (n = 800) and gut (n = 767) and the gut microbiome at enterotype and microbial taxa (n = 296) levels. Pathway analysis was conducted using Metaboanalyst 4.0. We performed multi-variable linear regression to explore both the HEI-metabolites and HEI-microbiome associations and how metabolites were affected by the HEI–microbiome interaction. In the Fish oils and Adipose Inflammation Reduction (FAIR) Study (n = 25), analyses on HEI and plasma metabolites were replicated. Estimates of findings from both studies were pooled in random-effects meta-analysis.

Results

The HEI-2015 was associated with 74 plasma and 73 gut metabolites (mostly lipids) and with 47 metabolites in the meta-analysis of the ABO and FAIR Studies. Compared to Enterotype-1 participants, those with Enterotype-2 had higher diet quality (p = 0.01). We also identified 9 microbial genera associated with HEI, and 35 plasma and 40 gut metabolites linked to the HEI–gut microbiome interaction. Pathways involved in the metabolism of polar lipids, amino acids and caffeine strongly associated with diet quality. However, the HEI–microbiome interaction not only influenced the pathways involved in the metabolism of branch-chain amino acids, it also affected upstream pathways including nucleotide metabolism and amino acids biosynthesis.

Conclusions

Our multi-omic analysis demonstrated that changes in metabolism, measured by either circulatory/gut metabolites or metabolic pathways, are influenced by not only diet quality but also gut microbiome alterations shaped by the quality of diet consumed. Future work is needed to explore the causality in the interplay between HEI and gut-microbiome composition in metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Amino acid

AHEI:

Alternate healthy eating index

AMP:

Adenosine 5′-monophosphate

DAG:

Diacylglycerol

DASH:

Dietary approaches to stop hypertension

DHQ:

Diet History Questionnaire

FAIR:

Fish oils and Adipose Inflammation Reduction

FFQ:

Food Frequency Questionnaires

HEI:

Healthy Eating Index

IQR:

Interquartile range

MUFA:

Monounsaturated

PAM:

Partitioning Around Medoids

PUFA:

Polyunsaturated fatty acid

SAH:

Adenosylhomocysteine

UPenn NGSC:

University of Pennsylvania Next-Generation Sequencing Center

VANTAGE:

Vanderbilt University Technologies for Advanced Genomics

References

  1. Gil Á, de Victoria EM, Olza J (2015) Indicators for the evaluation of diet quality. Nutr Hosp 31(Suppl 3):128–144. https://doi.org/10.3305/nh.2015.31.sup3.8761

    Article  PubMed  Google Scholar 

  2. Wirt A, Collins CE (2009) Diet quality—what is it and does it matter? Public Health Nutr 12:2473–2492. https://doi.org/10.1017/S136898000900531X

    Article  PubMed  Google Scholar 

  3. Imamura F, Micha R, Khatibzadeh S et al (2015) Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob Health 3:e132–e142. https://doi.org/10.1016/S2214-109X(14)70381-X

    Article  PubMed  PubMed Central  Google Scholar 

  4. George SM, Ballard-Barbash R, Manson JE et al (2014) Comparing indices of diet quality with chronic disease mortality risk in postmenopausal women in the Women’s Health Initiative Observational Study: evidence to inform national dietary guidance. Am J Epidemiol 180:616–625. https://doi.org/10.1093/aje/kwu173

    Article  PubMed  PubMed Central  Google Scholar 

  5. Playdon MC, Moore SC, Derkach A et al (2017) Identifying biomarkers of dietary patterns by using metabolomics. Am J Clin Nutr 105:450–465. https://doi.org/10.3945/ajcn.116.144501

    Article  PubMed  CAS  Google Scholar 

  6. Guasch-Ferré M, Bhupathiraju SN, Hu FB (2018) Use of metabolomics in improving assessment of dietary intake. Clin Chem 64:82–98. https://doi.org/10.1373/clinchem.2017.272344

    Article  PubMed  CAS  Google Scholar 

  7. Bagheri M, Willett W, Townsend MK et al (2020) A lipid-related metabolomic pattern of diet quality. Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqaa242

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tang Z-Z, Chen G, Hong Q et al (2019) Multi-omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome-dependent relationships between diet and metabolites. Front Genet 10:454. https://doi.org/10.3389/fgene.2019.00454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Visconti A, Le Roy CI, Rosa F et al (2019) Interplay between the human gut microbiome and host metabolism. Nat Commun 10:4505. https://doi.org/10.1038/s41467-019-12476-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Subramanian I, Verma S, Kumar S et al (2020) Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights 14:1177932219899051–1177932219899051. https://doi.org/10.1177/1177932219899051

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83. https://doi.org/10.1186/s13059-017-1215-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Shah RD, Tang Z-Z, Chen G et al (2020) Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner. Nutr Metab Cardiovasc Dis 30:1500–1511. https://doi.org/10.1016/j.numecd.2020.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Perng W, Aslibekyan S (2020) Find the needle in the haystack, then find it again: replication and validation in the ‘omics era. Metabolites 10:286. https://doi.org/10.3390/metabo10070286

    Article  PubMed Central  CAS  Google Scholar 

  14. Subar AF, Crafts J, Zimmerman TP et al (2010) Assessment of the accuracy of portion size reports using computer-based food photographs aids in the development of an automated self-administered 24-hour recall. J Am Diet Assoc 110:55–64. https://doi.org/10.1016/j.jada.2009.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ford L, Kennedy AD, Goodman KD et al (2020) Precision of a clinical metabolomics profiling platform for use in the identification of inborn errors of metabolism. J Appl Lab Med 5:342–356. https://doi.org/10.1093/jalm/jfz026

    Article  PubMed  Google Scholar 

  16. Wilmanski T, Rappaport N, Earls JC et al (2019) Blood metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol 37:1217–1228. https://doi.org/10.1038/s41587-019-0233-9

    Article  PubMed  CAS  Google Scholar 

  17. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1:97–111. https://doi.org/10.1002/jrsm.12

    Article  PubMed  Google Scholar 

  18. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  19. Hartman PE (1990) Ergothioneine as antioxidant. Methods in enzymology. Academic Press, pp 310–318

    Google Scholar 

  20. McCullough ML, Maliniak ML, Stevens VL et al (2019) Metabolomic markers of healthy dietary patterns in US postmenopausal women. Am J Clin Nutr 109:1439–1451. https://doi.org/10.1093/ajcn/nqy385

    Article  PubMed  Google Scholar 

  21. Sorrentino V, Menzies KJ, Auwerx J (2018) Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol Toxicol 58:353–389. https://doi.org/10.1146/annurev-pharmtox-010716-104908

    Article  PubMed  CAS  Google Scholar 

  22. Murphy MP (2013) Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab 18:145–146. https://doi.org/10.1016/j.cmet.2013.07.006

    Article  PubMed  CAS  Google Scholar 

  23. Menni C, Fauman E, Erte I et al (2013) Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 62:4270–4276. https://doi.org/10.2337/db13-0570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. https://doi.org/10.1126/science.1208344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sandberg J, Kovatcheva-Datchary P, Björck I et al (2019) Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur J Nutr 58:2365–2376. https://doi.org/10.1007/s00394-018-1788-9

    Article  PubMed  CAS  Google Scholar 

  26. Kovatcheva-Datchary P, Nilsson A, Akrami R et al (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 22:971–982. https://doi.org/10.1016/j.cmet.2015.10.001

    Article  PubMed  CAS  Google Scholar 

  27. Johnson AJ, Zheng JJ, Kang JW et al (2020) A guide to diet-microbiome study design. Front Nutr 7:79–79. https://doi.org/10.3389/fnut.2020.00079

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maskarinec G, Hullar MAJ (2020) Understanding the interaction of diet quality with the gut microbiome and their effect on disease. J Nutr 150:654–655. https://doi.org/10.1093/jn/nxaa015

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rodríguez-Carrio J, Salazar N, Margolles A et al (2017) Free fatty acids profiles are related to gut microbiota signatures and short-chain fatty acids. Front Immunol 8:823–823. https://doi.org/10.3389/fimmu.2017.00823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Saini RK, Keum Y-S (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance—a review. Life Sci 203:255–267. https://doi.org/10.1016/j.lfs.2018.04.049

    Article  PubMed  CAS  Google Scholar 

  31. Ríos-Covián D, Ruas-Madiedo P, Margolles A et al (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185–185. https://doi.org/10.3389/fmicb.2016.00185

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu F, Tavintharan S, Sum CF et al (2013) Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J Clin Endocrinol Metab 98:E1060-1065. https://doi.org/10.1210/jc.2012-4132

    Article  PubMed  CAS  Google Scholar 

  33. Krebs M, Krssak M, Bernroider E et al (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51:599–605. https://doi.org/10.2337/diabetes.51.3.599

    Article  PubMed  CAS  Google Scholar 

  34. Holmsen H, Hindenes JO, Fukami M (1992) Glycerophospholipid metabolism: back to the future. Thromb Res 67:313–323. https://doi.org/10.1016/0049-3848(92)90006-v

    Article  PubMed  CAS  Google Scholar 

  35. Nehlig A (2018) Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev 70:384. https://doi.org/10.1124/pr.117.014407

    Article  PubMed  CAS  Google Scholar 

  36. Yang A, Palmer AA, de Wit H (2010) Genetics of caffeine consumption and responses to caffeine. Psychopharmacology 211:245–257. https://doi.org/10.1007/s00213-010-1900-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Siddiqui A, Ceppi P (2020) A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab 35:100962–100962. https://doi.org/10.1016/j.molmet.2020.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Willett W (2012) Nutritional epidemiology. Oxford University Press

    Book  Google Scholar 

  39. Althouse AD (2016) Adjust for multiple comparisons? It’s not that simple. Ann Thorac Surg 101:1644–1645. https://doi.org/10.1016/j.athoracsur.2015.11.024

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the NIH, (R01 HL142856), by an AHA Scientist Development Grant (15SDG24890015), and a P&F Award from the Vanderbilt University Medical Center’s Digestive Disease Research Center supported by NIH grant P30DK058404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane F. Ferguson.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Shah, R.D., Mosley, J.D. et al. A metabolome and microbiome wide association study of healthy eating index points to the mechanisms linking dietary pattern and metabolic status. Eur J Nutr 60, 4413–4427 (2021). https://doi.org/10.1007/s00394-021-02599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02599-9

Keywords

Navigation