Skip to main content

Advertisement

Log in

Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Atherosclerosis and its related clinical complications are the leading cause of death. MicroRNA (miR)-92a in the inflammatory endothelial dysfunction leads to atherosclerosis. Krüppel-like factor 2 (KLF2) is required for vascular integrity and endothelial function maintenance. Flavonoids possess many biological properties. This study investigated the vascular protective effects of chrysin in balloon-injured carotid arteries.

Materials and methods

Exosomes were extracted from human coronary artery endothelial cell (HCAEC) culture media. Herb flavonoids and chrysin were the treatments in these atheroprotective models. Western blotting and real-time PCRs were performed. In situ hybridization, immunohistochemistry, and immunofluorescence analyses were employed.

Results

MiR-92a increased after balloon injury and was present in HCAEC culture media. Chrysin was treated, and significantly attenuated the miR-92a levels after balloon injury, and similar results were obtained in HCAEC cultures in vitro. Balloon injury-induced miR-92a expression, and attenuated KLF2 expression. Chrysin increased the KLF2 but reduced exosomal miR-92a secretion. The addition of chrysin and antagomir-92a, neointimal formation was reduced by 44.8 and 49.0% compared with balloon injury after 14 days, respectively.

Conclusion

Chrysin upregulated KLF2 expression in atheroprotection and attenuated endothelial cell-derived miR-92a-containing exosomes. The suppressive effect of miR-92a suggests that chrysin plays an atheroprotective role.

Graphic abstract

Proposed pathway for human coronary artery endothelial cell (HCAEC)-derived exosomes induced by chrysin to suppress microRNA (miR)-92a expression and counteract the inhibitory effect of miR-92a on KLF2 expression in HCAECs. This provides an outline of the critical role of the herbal flavonoid chrysin, which may serve as a valuable therapeutic supplement for atheroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MiR-92a:

MicroRNA-92a

KLF2:

Krüppel-like factor 2

PCR:

Polymerase chain reaction

HCAEC:

Human coronary artery endothelial cell

EGCG:

Epigallocatechin gallate

FA:

Ferulic acid

DMSO:

Dimethyl sulfoxide

SD:

Standard deviation

ANOVA:

Analysis of variance

References

  1. Gimbrone MA Jr, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 18(4):620–636

    Article  CAS  Google Scholar 

  2. Jain MK, Sangwung P, Hamik A (2014) Regulation of an inflammatory disease: Krüppel-like factors and atherosclerosis. Arterioscler Thromb Vasc Biol 34(3):499–508

    Article  CAS  Google Scholar 

  3. Navickas R, Gal D, Laucevičius A, Taparauskaitė A, Zdanytė M, Holvoet P (2016) Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc Res 111(4):322–337

    Article  CAS  Google Scholar 

  4. Loyer X, Potteaux S, Vion AC et al (2014) Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 114(3):434–443

    Article  CAS  Google Scholar 

  5. Feinberg MW, Moore KJ (2016) MicroRNA regulation of atherosclerosis. Circ Res 118(4):703–720

    Article  CAS  Google Scholar 

  6. Fang Y, Davies PF (2012) Site-specific microRNA-92a regulation of Kruppel-like Factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 32(4):979–987

    Article  CAS  Google Scholar 

  7. Jansen F, Li Q, Pfeifer A, Werner N (2017) Endothelial- and immune cell-derived extracellular vesicles in the regulation of cardiovascular health and disease. JACC Basic Transl Sci 2(6):790–807

    Article  Google Scholar 

  8. Lu X (2017) The role of exosomes and exosome-derived microRNAs in atherosclerosis. Curr Pharm Des 23(40):6182–6193

    Article  CAS  Google Scholar 

  9. Chang YJ, Li YS, Wu CC et al (2019) Extracellular microRNA-92a mediates endothelial cell-macrophage communication. Arterioscler Thromb Vasc Biol 39(12):2492–2504

    Article  CAS  Google Scholar 

  10. Shyu KG, Wang BW, Pan CM, Fang WJ, Lin CM (2019) Hyperbaric oxygen boosts long noncoding RNA MALAT1 exosome secretion to suppress microRNA-92a expression in therapeutic angiogenesis. Int J Cardiol 274:271–278

    Article  Google Scholar 

  11. Liu Y, Li Q, Hosen MR et al (2019) Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ Res 124(4):575–587

    Article  CAS  Google Scholar 

  12. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. https://doi.org/10.1155/2013/162750

    Article  Google Scholar 

  13. Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2(8):889–902

    Article  CAS  Google Scholar 

  14. Enaa F, Badole S, Menaa B, Menaa A, Bodhankar S (2012) Polyphenols, promising therapeutics for inflammatory diseases? In: Watson R, Preedy V (eds) Bioactive food as dietary interventions for arthritis and related inflammatory diseases, 1st edn. Academic Press, New York, pp 421–430

    Google Scholar 

  15. Farkhondeh T, Samarghandian S, Bafandeh F (2019) The cardiovascular protective effects of chrysin: a narrative review on experimental researches. Cardiovasc Hematol Agents Med Chem 17(1):17–27

    Article  CAS  Google Scholar 

  16. Lin CM, Shyu KG, Wang BW, Chang H, Chen YH, Chiu JH (2010) Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: an in vitro and in ovo approach. J Agric Food Chem 58(11):7082–7087

    Article  CAS  Google Scholar 

  17. Zhao S, Liang M, Wang Y et al (2019) Chrysin suppresses vascular endothelial inflammation via inhibiting the NF-κB signaling pathway. J Cardiovasc Pharmacol Ther 24(3):278–287

    Article  CAS  Google Scholar 

  18. Lin CM, Wang BW, Pan CM et al (2018) Effects of flavonoids on microRNA 145 regulation through Klf4 and myocardin in neointimal formation in vitro and in vivo. J Nutr Biochem 52:27–35

    Article  CAS  Google Scholar 

  19. Wang W, Li Z, Zheng Y, Yan M, Cui Y, Jiang J (2019) Circulating microRNA-92a level predicts acute coronary syndrome in diabetic patients with coronary heart disease. Lipids Health Dis 18(1):22. https://doi.org/10.1186/s12944-019-0964-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Z, Zhang J, Zhang S et al (2019) MiR-30e and miR-92a Are related to atherosclerosis by targeting ABCA1. Mol Med Rep 19(4):3298–3304

    PubMed  CAS  Google Scholar 

  21. Vazhappilly CG, Ansari SA, Al-Jaleeli R et al (2019) Role of flavonoids in thrombotic, cardiovascular, and inflammatory diseases. Inflammopharmacology 27(5):863–869

    Article  Google Scholar 

  22. Farkhondeh T, Samarghandian S, Bafandeh F (2019) Impact of chrysin on the molecular mechanisms underlying diabetic complications. J Cell Physiol 234(10):17144–17158

    Article  CAS  Google Scholar 

  23. Andrade N, Andrade S, Silva C et al (2020) Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats. Eur J Nutr 59(1):151–165

    Article  CAS  Google Scholar 

  24. Zhong X, Zhang L, Li Y, Li P, Li J, Cheng G (2018) Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of miR-26a-5p via inhibiting TLR4/NF-κB pathway in human endothelial cells. Biomed Pharmacother 108:1783–1789

    Article  CAS  Google Scholar 

  25. Zhang H, Zhao Z, Pang X et al (2017) MiR-34a/sirtuin-1/foxo3a is involved in genistein protecting against ox-LDL-induced oxidative damage in HUVECs. Toxicol Lett 277:115–122

    Article  CAS  Google Scholar 

  26. Xu X, Tian L, Zhang Z (2019) Triptolide inhibits angiogenesis in microvascular endothelial cells through regulation of miR-92a. J Physiol Biochem 75(4):573–583

    Article  CAS  Google Scholar 

  27. Chamorro-Jorganes A, Lee MY, Araldi E et al (2016) VEGF-induced expression of miR-17–92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ Res 118(1):38–47

    Article  CAS  Google Scholar 

  28. Sweets DR, Fan L, Hsieh PN, Jain MK (2018) Krüppel-like factors in vascular inflammation: mechanistic insights and therapeutic potential. Front Cardiovasc Med 5:6. https://doi.org/10.3389/fcvm.2018.00006.5,1

    Article  Google Scholar 

  29. Martínez-Fernández L, Pons Z, Margalef M, Arola-Arnal A, Muguerza B (2015) Regulation of vascular endothelial genes by dietary flavonoids: structure-expression relationship studies and the role of the transcription factor KLF-2. J Nutr Biochem 26(3):277–284

    Article  CAS  Google Scholar 

  30. Caton PW, Pothecary MR, Lees DM et al (2010) Regulation of vascular endothelial function by procyanidin-rich foods and beverages. J Agric Food Chem 58(7):4008–4013

    Article  CAS  Google Scholar 

  31. Han JM, Li H, Cho MH et al (2017) Soy-leaf extract exerts atheroprotective effects via modulation of Krüppel-like factor 2 and adhesion molecules. Int J Mol Sci 18(2):373. https://doi.org/10.3390/ijms18020373

    Article  PubMed Central  CAS  Google Scholar 

  32. AnandhiR TPA, Geraldine P (2014) Evaluation of the anti-atherogenic potential of chrysin in Wistar rats. Mol Cell Biochem 385(1–2):103–113

    Article  CAS  Google Scholar 

  33. Boulanger CM, Loyer X, Rautou PE, Amabile N (2017) Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 14(5):259–272

    Article  CAS  Google Scholar 

  34. Wang Y, Xie Y, Zhang A, Wang M, Fang Z, Zhang J (2019) Exosomes: an emerging factor in atherosclerosis. Biomed Pharmacother 115:108951. https://doi.org/10.1016/j.biopha.2019.108951

    Article  PubMed  CAS  Google Scholar 

  35. Yin M, Loyer X, Boulanger CM (2015) Extracellular vesicles as new pharmacological targets to treat atherosclerosis. Eur J Pharmacol 763(Pt A):90–103

    Article  CAS  Google Scholar 

  36. Soleti R, Andriantsitohaina R, Martinez MC (2018) Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health. Arch Biochem Biophys 644:57–63

    Article  CAS  Google Scholar 

  37. Camacho P, Fan HM, Liu ZM, He JQ (2016) Small mammalian animal models of heart disease. Am J Cardiovasc Dis 6(3):70–80

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported, in part, by Shin Kong Wu Ho-Su Memorial Hospital (Taipei, Taiwan; SKH-8302-105-DR-23). CML, BWW, CMP, WJF, and KGS conceived and designed the experiments. CML, SKC, and KGS analyzed the data. CML wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Kiat Chua or Kou-Gi Shyu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CM., Wang, BW., Pan, CM. et al. Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection . Eur J Nutr 60, 4345–4355 (2021). https://doi.org/10.1007/s00394-021-02593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02593-1

Keywords

Navigation