Skip to main content

Advertisement

Log in

Effects of yeast β-glucans for the prevention and treatment of upper respiratory tract infection in healthy subjects: a systematic review and meta-analysis

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Yeast β-glucans are known for their immune-modulating effects; however, their effects on human upper respiratory tract infections (URTIs) remain unclear. The aim of the present study was to use a systematic review and meta-analysis approach to investigate the effects of yeast β-glucans for the prevention and treatment of URTIs in healthy subjects.

Methods

Databases including Pubmed, Web of Science, EMBASE and the Cochrane Library were searched and 13 RCTs investigating the effects of yeast β-glucans on the incidence, duration, and severity of URTIs in healthy subjects were included.

Results

The results showed that compared to the placebo group, yeast β-glucan could significantly reduce the incidence of URTIs (OR = 0.345, 95% CI = 0.192 to 0.620, p < 0.001), decrease the average number of URTI episodes (SMD =  − 0.315, 95% CI =  − 0.500 to  − 0.130, p < 0.05), and decrease the duration of URTIs (SMD =  − 0.312, 95% CI =  − 0.561 to  − 0.064, p < 0.001). Improved severity of symptoms was found in yeast β-glucan group compared to the placebo group in the majority of included studies. In addition, yeast β-glucan was well tolerated and safe in general.

Conclusion

These findings suggest a positive effect of yeast β-glucans on human URTIs. However, due to the high heterogeneity and small number of included studies, more high-quality research and clinical trials are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Yes.

References

  1. Jain N, Lodha R, Kabra SK (2001) Upper respiratory tract infections. Indian J Pediatr 68(12):1135–1138. https://doi.org/10.1007/BF02722930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Heikkinen T, Jarvinen A (2003) The common cold. Lancet 361(9351):51–59. https://doi.org/10.1016/S0140-6736(03)12162-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arroll B (2011) Common cold. BMJ Clin Evid 2011:1510

    PubMed  PubMed Central  Google Scholar 

  4. Thomas M, Bomar PA (2021) Upper respiratory tract infection. StatPearls, Treasure Island (FL)

    Google Scholar 

  5. Somerville VS, Braakhuis AJ, Hopkins WG (2016) Effect of flavonoids on upper respiratory tract infections and immune function: a systematic review and meta-analysis. Adv Nutr 7(3):488–497. https://doi.org/10.3945/an.115.010538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Makela MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimaki M, Blomqvist S, Hyypia T, Arstila P (1998) Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36(2):539–542. https://doi.org/10.1128/JCM.36.2.539-542.1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bermon S (2007) Airway inflammation and upper respiratory tract infection in athletes: is there a link? Exerc Immunol Rev 13:6–14

    PubMed  Google Scholar 

  8. Walsh NP, Oliver SJ (2016) Exercise, immune function and respiratory infection: an update on the influence of training and environmental stress. Immunol Cell Biol 94(2):132–139. https://doi.org/10.1038/icb.2015.99

    Article  PubMed  CAS  Google Scholar 

  9. Cohen S, Frank E, Doyle WJ, Skoner DP, Rabin BS, Gwaltney JM Jr (1998) Types of stressors that increase susceptibility to the common cold in healthy adults. Health Psychol: Off J Div Health Psychol Am Psychol Assoc 17(3):214–223. https://doi.org/10.1037//0278-6133.17.3.214

    Article  CAS  Google Scholar 

  10. Cobb JM, Steptoe A (1996) Psychosocial stress and susceptibility to upper respiratory tract illness in an adult population sample. Psychosom Med 58(5):404–412. https://doi.org/10.1097/00006842-199609000-00003

    Article  PubMed  CAS  Google Scholar 

  11. Bramley TJ, Lerner D, Sames M (2002) Productivity losses related to the common cold. J Occup Environ Med 44(9):822–829. https://doi.org/10.1097/00043764-200209000-00004

    Article  PubMed  Google Scholar 

  12. Fendrick AM, Monto AS, Nightengale B, Sarnes M (2003) The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med 163(4):487–494. https://doi.org/10.1001/archinte.163.4.487

    Article  PubMed  Google Scholar 

  13. El-Sahly HM, Atmar RL, Glezen WP, Greenberg SB (2000) Spectrum of clinical illness in hospitalized patients with “common cold” virus infections. Clin infect dis: off publf the Infectious Diseases Society of America 31(1):96–100. https://doi.org/10.1086/313937

    Article  CAS  Google Scholar 

  14. De Marco CE, Calder PC, Roche HM (2021) beta-1,3/1,6-Glucans and Immunity: State of the Art and Future Directions. Mol Nutr Food Res 65(1):e1901071. https://doi.org/10.1002/mnfr.201901071

    Article  CAS  Google Scholar 

  15. Bashir KMI, Choi JS (2017) Clinical and Physiological Perspectives of beta-Glucans: The Past, Present, and Future. International journal of molecular sciences 18 (9). doi:https://doi.org/10.3390/ijms18091906

  16. Wang Q, Sheng X, Shi A, Hu H, Yang Y, Liu L, Fei L, Liu H (2017) beta-Glucans: Relationships between Modification, Conformation and Functional Activities. Molecules 22 (2). doi:https://doi.org/10.3390/molecules22020257

  17. Du B, Meenu M, Liu H, Xu B (2019) A Concise Review on the Molecular Structure and Function Relationship of beta-Glucan. International journal of molecular sciences 20 (16). doi:https://doi.org/10.3390/ijms20164032

  18. Markovina N, Banjari I, Bucevic Popovic V, Jelicic Kadic A, Puljak L (2020) Efficacy and safety of oral and inhalation commercial beta-glucan products: Systematic review of randomized controlled trials. Clin Nutr 39(1):40–48. https://doi.org/10.1016/j.clnu.2019.01.003

    Article  PubMed  CAS  Google Scholar 

  19. Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7(7):715–729. https://doi.org/10.2174/0929867003374705

    Article  PubMed  CAS  Google Scholar 

  20. Novak M, Vetvicka V (2009) Glucans as biological response modifiers. Endocr Metab Immune Disord Drug Targets 9(1):67–75. https://doi.org/10.2174/187153009787582423

    Article  PubMed  CAS  Google Scholar 

  21. Richter J, Kral V, Stiborova I, Rajnohova D, Vetvicka V (2015) Anti-Inflammatory Effects of β-Glucan in Cancer Related Fatigue. Journal of Nutrition and Health Sciences 2(3):304–310. https://doi.org/10.15744/2393-9060.2.304

    Article  Google Scholar 

  22. Liu Y, Wu Q, Wu X, Algharib SA, Gong F, Hu J, Luo W, Zhou M, Pan Y, Yan Y, Wang Y (2021) Structure, preparation, modification, and bioactivities of beta-glucan and mannan from yeast cell wall: A review. Int J Biol Macromol 173:445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125

    Article  PubMed  CAS  Google Scholar 

  23. Qi C, Cai Y, Gunn L, Ding C, Li B, Kloecker G, Qian K, Vasilakos J, Saijo S, Iwakura Y, Yannelli JR, Yan J (2011) Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived beta-glucans. Blood 117(25):6825–6836. https://doi.org/10.1182/blood-2011-02-339812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vetvicka V, Vannucci L, Sima P, Richter J (2019) Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules 24 (7). doi:https://doi.org/10.3390/molecules24071251

  25. Samuelsen AB, Schrezenmeir J, Knutsen SH (2014) Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res 58(1):183–193. https://doi.org/10.1002/mnfr.201300338

    Article  PubMed  CAS  Google Scholar 

  26. Stier H, Ebbeskotte V, Gruenwald J (2014) Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J 13:38. https://doi.org/10.1186/1475-2891-13-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Suzuki T, Kusano K, Kondo N, Nishikawa K, Kuge T, Ohno N (2021) Biological Activity of High-Purity beta-1,3–1,6-Glucan Derived from the Black Yeast Aureobasidium pullulans: A Literature Review. Nutrients. https://doi.org/10.3390/nu13010242

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jayachandran M, Chen J, Chung SSM, Xu B (2018) A critical review on the impacts of beta-glucans on gut microbiota and human health. J Nutr Biochem 61:101–110. https://doi.org/10.1016/j.jnutbio.2018.06.010

    Article  PubMed  CAS  Google Scholar 

  29. Del Corno M, Gessani S, Conti L (2020) Shaping the innate immune response by dietary glucans: any role in the control of cancer? Cancers. https://doi.org/10.3390/cancers12010155

    Article  PubMed  PubMed Central  Google Scholar 

  30. Majtan J, Jesenak M (2018) Beta-glucans: multi-functional modulator of wound healing. Molecules. https://doi.org/10.3390/molecules23040806

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vetvicka V, Vetvickova J (2012) Combination of glucan, resveratrol and vitamin C demonstrates strong anti-tumor potential. Anticancer Res 32(1):81–87

    PubMed  CAS  Google Scholar 

  32. Vetvicka V, Pinatto-Botelho MF, Dos Santos AA, De Oliveira CA (2014) Evaluation of a special combination of glucan with organic selenium derivative in different murine tumor models. Anticancer Res 34(12):6939–6944

    PubMed  CAS  Google Scholar 

  33. Geller A, Shrestha R, Yan J (2019) Yeast-derived beta-glucan in cancer: novel uses of a traditional therapeutic. Int J Mol Sci. https://doi.org/10.3390/ijms20153618

    Article  PubMed  PubMed Central  Google Scholar 

  34. Richter J, Svozil V, Kral V, Rajnohova Dobiasova L, Stiborova I, Vetvicka V (2014) Clinical trials of yeast-derived beta-(1,3) glucan in children: effects on innate immunity. Ann Translat Med 2(2):15. https://doi.org/10.3978/j.issn.2305-5839.2014.02.01

    Article  CAS  Google Scholar 

  35. Vetvicka V, Richter J, Svozil V, Rajnohova Dobiasova L, Kral V (2013) Placebo-driven clinical trials of yeast-derived beta-(1–3) glucan in children with chronic respiratory problems. Ann Translat Med 1(3):26. https://doi.org/10.3978/j.issn.2305-5839.2013.07.01

    Article  Google Scholar 

  36. Richter J, Svozil V, Kral V, Rajnohova Dobiasova L, Vetvicka V (2015) Beta-glucan affects mucosal immunity in children with chronic respiratory problems under physical stress: clinical trials. Ann Translat Med 3(4):52. https://doi.org/10.3978/j.issn.2305-5839.2015.03.20

    Article  CAS  Google Scholar 

  37. Jippo T, Suzuki T, Sato H, Kobayashi Y, Shigekawa M (2015) Water-soluble low-molecular-weight b-(1, 3–1, 6) D-glucan inhibit cedar pollinosis. Funct Food Health Dis 5(2):80–88. https://doi.org/10.31989/ffhd.v5i2.173

    Article  CAS  Google Scholar 

  38. Nieman DC, Henson DA, McMahon M, Wrieden JL, Davis JM, Murphy EA, Gross SJ, McAnulty LS, Dumke CL (2008) Beta-glucan, immune function, and upper respiratory tract infections in athletes. Med Sci Sports Exerc 40(8):1463–1471. https://doi.org/10.1249/MSS.0b013e31817057c2

    Article  PubMed  CAS  Google Scholar 

  39. Jesenak M, Majtan J, Rennerova Z, Kyselovic J, Banovcin P, Hrubisko M (2013) Immunomodulatory effect of pleuran (beta-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int Immunopharmacol 15(2):395–399. https://doi.org/10.1016/j.intimp.2012.11.020

    Article  PubMed  CAS  Google Scholar 

  40. Lim JM, Do E, Park DC, Jung GW, Cho HR, Lee SY, Shin JW, Baek KM, Choi JS (2018) Ingestion of exopolymers from aureobasidium pullulans reduces the duration of cold and flu symptoms: a randomized, placebo-controlled intervention study. Evid-Based Complement Altern Med: eCAM 2018:9024295. https://doi.org/10.1155/2018/9024295

    Article  Google Scholar 

  41. Graubaum H, Busch R, Stier H, Gruenwald J (2012) A double-blind, randomized, placebo-controlled nutritional study using an insoluble yeast beta-glucan to improve the immune defense system. Food Nutr Sci 3:738–746

    CAS  Google Scholar 

  42. Dharsono T, Rudnicka K, Wilhelm M, Schoen C (2019) Effects of yeast (1,3)-(1,6)-beta-glucan on severity of upper respiratory tract infections: a double-blind, randomized, placebo-controlled study in healthy subjects. J Am Coll Nutr 38(1):40–50. https://doi.org/10.1080/07315724.2018.1478339

    Article  PubMed  Google Scholar 

  43. Fuller R, Moore MV, Lewith G, Stuart BL, Ormiston RV, Fisk HL, Noakes PS, Calder PC (2017) Yeast-derived beta-1,3/1,6 glucan, upper respiratory tract infection and innate immunity in older adults. Nutrition 39–40:30–35. https://doi.org/10.1016/j.nut.2017.03.003

    Article  PubMed  CAS  Google Scholar 

  44. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  45. Auinger A, Riede L, Bothe G, Busch R, Gruenwald J (2013) Yeast (1,3)-(1,6)-beta-glucan helps to maintain the body’s defence against pathogens: a double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur J Nutr 52(8):1913–1918. https://doi.org/10.1007/s00394-013-0492-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Feldman S, Schwartz HI, Kalman DS, Mayers A, Kohrman HM, Clemens R, Krieger DR (2009) Randomized phase II clinical trials of Wellmune WGP® for immune support during cold and flu season. Journal of Applied Research 9(1–2):30–42

    CAS  Google Scholar 

  47. Fuller R, Butt H, Noakes PS, Kenyon J, Yam TS, Calder PC (2012) Influence of yeast-derived 1,3/1,6 glucopolysaccharide on circulating cytokines and chemokines with respect to upper respiratory tract infections. Nutrition 28(6):665–669. https://doi.org/10.1016/j.nut.2011.11.012

    Article  PubMed  CAS  Google Scholar 

  48. Mah E, Kaden VN, Kelley KM, Liska DJ (2020) Beverage containing dispersible yeast beta-glucan decreases cold/flu symptomatic days after intense exercise: a randomized controlled trial. Journal of Dietary Supplements 17(2):200–210. https://doi.org/10.1080/19390211.2018.1495676

    Article  PubMed  CAS  Google Scholar 

  49. Mah E, Kaden VN, Kelley KM, Liska DJ (2020) Soluble and insoluble yeast beta-glucan differentially affect upper respiratory tract infection in marathon runners: a double-blind, randomized placebo-controlled trial. J Med Food 23(4):416–419. https://doi.org/10.1089/jmf.2019.0076

    Article  PubMed  CAS  Google Scholar 

  50. McFarlin BK, Carpenter KC, Davidson T, McFarlin MA (2013) Baker’s yeast beta glucan supplementation increases salivary IgA and decreases cold/flu symptomatic days after intense exercise. Journal of Dietary Supplements 10(3):171–183. https://doi.org/10.3109/19390211.2013.820248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Meng F (2016) Baker’s yeast beta-glucan decreases episodes of common childhood illness in 1 to 4 year old children during cold season in China. J Nutr Food Sci 6(4):518–522

    Google Scholar 

  52. Talbott S, Talbott J (2009) Effect of beta 1,3/1,6 glucan on upper respiratory tract infection symptoms and mood state in marathon athletes. J Sports Sci Med 8(4):509–515

    PubMed  PubMed Central  Google Scholar 

  53. Talbott S, Talbott J (2010) Beta 1,3/1,6 glucan decreases upper respiratory tract infection symptoms and improves psychological well-being in moderate to highly-stressed subjects. Agro Food Ind Hi Tech 21(1):21–24

    Google Scholar 

  54. Talbott SM, Talbott JA (2012) Baker’s yeast beta-glucan supplement reduces upper respiratory symptoms and improves mood state in stressed women. J Am Coll Nutr 31(4):295–300. https://doi.org/10.1080/07315724.2012.10720441

    Article  PubMed  CAS  Google Scholar 

  55. Torello CO, de Souza QJ, Oliveira SC, Queiroz ML (2010) Immunohematopoietic modulation by oral beta-1,3-glucan in mice infected with Listeria monocytogenes. Int Immunopharmacol 10(12):1573–1579. https://doi.org/10.1016/j.intimp.2010.09.009

    Article  PubMed  CAS  Google Scholar 

  56. Sandvik A, Wang YY, Morton HC, Aasen AO, Wang JE, Johansen FE (2007) Oral and systemic administration of beta-glucan protects against lipopolysaccharide-induced shock and organ injury in rats. Clin Exp Immunol 148(1):168–177. https://doi.org/10.1111/j.1365-2249.2006.03320.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tsukada C, Yokoyama H, Miyaji C, Ishimoto Y, Kawamura H, Abo T (2003) Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cell Immunol 221(1):1–5. https://doi.org/10.1016/s0008-8749(03)00061-3

    Article  PubMed  CAS  Google Scholar 

  58. Stuyven E, Van den Broeck W, Nauwynck H, Goddeeris BM, Cox E (2010) Oral administration of beta-1,3/1,6-glucan Macrogard fails to enhance the mucosal immune response following oral F4 fimbrial immunisation in gnotobiotic pigs. Vet Immunol Immunopathol 137(3–4):291–297. https://doi.org/10.1016/j.vetimm.2010.05.007

    Article  PubMed  CAS  Google Scholar 

  59. de Vries H, Geervliet M, Jansen CA, Rutten V, van Hees H, Groothuis N, Wells JM, Savelkoul HFJ, Tijhaar E, Smidt H (2020) Impact of yeast-derived beta-glucans on the porcine gut microbiota and immune system in early life. Microorganisms. https://doi.org/10.3390/microorganisms8101573

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vetvicka V, Vancikova Z (2010) Anti-stress action of several orally-given beta-glucans. Biomed Pap Med Fac Univ Palacky, Olomouc, Czechoslovakia 154(3):235–238. https://doi.org/10.5507/bp.2010.035

    Article  CAS  Google Scholar 

  61. Zabriskie HA, Blumkaitis JC, Moon JM, Currier BS, Stefan R, Ratliff K, Harty PS, Stecker RA, Rudnicka K, Jager R, Roberts MD, Young K, Jagim AR, Kerksick CM (2020) Yeast beta-glucan supplementation downregulates markers of systemic inflammation after heated treadmill exercise. Nutrients. https://doi.org/10.3390/nu12041144

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XX, KXZ; study selection: KXZ, ZQL; data extraction and analysis: KXZ, ZQL, YL, XX; writing—original draft: KXZ, XX; writing—review ans editing: XX, ZQL, YL.

Corresponding author

Correspondence to Xi Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A

1. “upper respiratory tract infection”.

2. “common cold”.

3. “rhinitis”.

4. “pharyngitis”.

5. “rhino pharyngitis”.

6. “naso pharyngitis”.

7. “sinusitis”.

8. “rhino sinusitis”.

9. “naso sinusitis”.

10. “laryngitis”.

11. “tonsillitis”.

12. “nasal congestion”.

13. “nasal obstruction”.

14. “nose congestion”.

15. “nose obstruction”.

16. “rhinorrhea”.

17. “rhinovirus”.

18. “influenza”.

19. #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18

20. “β-glucan”.

21. “β-Glucan”.

22. “Βeta-glucan”.

23. “Βeta-Glucan”.

24. #20 OR #21 OR #22 OR #23

25. “randomized controlled trial”.

26. “controlled clinical trial”.

27. “random”.

28. “randomized”.

29. “randomly”.

30. “placebo”.

31. #25 OR #26 OR #27 OR #28 OR #29 OR #30

32. #19 AND #24 AND #31

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, K., Liu, Z., Lu, Y. et al. Effects of yeast β-glucans for the prevention and treatment of upper respiratory tract infection in healthy subjects: a systematic review and meta-analysis. Eur J Nutr 60, 4175–4187 (2021). https://doi.org/10.1007/s00394-021-02566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02566-4

Keywords

Navigation