Skip to main content

Advertisement

Log in

Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Pesticides have long been used in agriculture and household treatments. Pesticide residues can be found in biological samples for both the agriculture workers through direct exposure but also to the general population by indirect exposure. There is also evidence of pesticide contamination in utero and trans-generational impacts. Whilst acute exposure to pesticides has long been associated with endocrine perturbations, chronic exposure with low doses also increases the prevalence of metabolic disorders such as obesity or type 2 diabetes. Dysmetabolism is a low-grade inflammation disorder and as such the microbiota plays a role in its etiology. It is therefore important to fully understand the role of microbiota on the genesis of subsequent health effects. The digestive tract and mostly microbiota are the first organs of contact after oral exposure. The objective of this review is thus to better understand mechanisms that link pesticide exposure, dysmetabolism and microbiota. One of the key outcomes on the microbiota is the reduced Bacteroidetes and increased Firmicutes phyla, reflecting both pesticide exposure and risk factors of dysmetabolism. Other bacterial genders and metabolic activities are also involved. As for most pathologies impacting microbiota (including inflammatory disorders), the role of prebiotics can be suggested as a prevention strategy and some preliminary evidence reinforces this axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Merviel P, Cabry R, Chardon K et al (2017) Impact of oocytes with CLCG on ICSI outcomes and their potential relation to pesticide exposure. J Ovarian Res 10:42. https://doi.org/10.1186/s13048-017-0335-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sharma A, Shukla A, Attri K et al (2020) Global trends in pesticides: a looming threat and viable alternatives. Ecotoxicol Environ Saf 201:110812. https://doi.org/10.1016/j.ecoenv.2020.110812

    Article  PubMed  CAS  Google Scholar 

  3. Dahiya DK, Renuka PM et al (2017) Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00563

    Article  PubMed  PubMed Central  Google Scholar 

  4. Skrypnik K, Suliburska J (2018) Association between the gut microbiota and mineral metabolism. J Sci Food Agric 98:2449–2460. https://doi.org/10.1002/jsfa.8724

    Article  PubMed  CAS  Google Scholar 

  5. Crowley EK, Long-Smith CM, Murphy A et al (2018) Dietary supplementation with a magnesium-rich marine mineral blend enhances the diversity of gastrointestinal microbiota. Mar Drugs 16:216. https://doi.org/10.3390/md16060216

    Article  PubMed Central  CAS  Google Scholar 

  6. Cheng H-Y, Ning M-X, Chen D-K, Ma W-T (2019) Interactions between the gut microbiota and the host innate immune response against pathogens. Front Immunol. https://doi.org/10.3389/fimmu.2019.00607

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mariat D, Firmesse O, Levenez F et al (2009) The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. https://doi.org/10.1186/1471-2180-9-123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703. https://doi.org/10.1016/j.chom.2015.04.004

    Article  PubMed  CAS  Google Scholar 

  9. Lee SY, Lee DY, Kang HJ et al (2021) Differences in the gut microbiota between young and elderly persons in Korea. Nutr Res 87:31–40. https://doi.org/10.1016/j.nutres.2020.12.013

    Article  PubMed  CAS  Google Scholar 

  10. Carding S, Verbeke K, Vipond DT et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191. https://doi.org/10.3402/mehd.v26.26191

    Article  PubMed  Google Scholar 

  11. Rinninella E, Cintoni M, Raoul P et al (2019) Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients 11:2393. https://doi.org/10.3390/nu11102393

    Article  PubMed Central  CAS  Google Scholar 

  12. Antonopoulos DA, Huse SM, Morrison HG et al (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375. https://doi.org/10.1128/IAI.01520-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 108:4554–4561. https://doi.org/10.1073/pnas.1000087107

    Article  PubMed  Google Scholar 

  14. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. https://doi.org/10.1126/science.1208344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736. https://doi.org/10.1073/pnas.0804812105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Halfvarson J, Brislawn CJ, Lamendella R et al (2017) Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2:17004. https://doi.org/10.1038/nmicrobiol.2017.4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Putignani L, Del Chierico F, Vernocchi P et al (2016) Gut microbiota dysbiosis as risk and premorbid factors of ibd and ibs along the childhood-adulthood transition. Inflamm Bowel Dis 22:487–504. https://doi.org/10.1097/MIB.0000000000000602

    Article  PubMed  Google Scholar 

  18. Zhao Y, Wu J, Li JV et al (2013) Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res 12:2987–2999. https://doi.org/10.1021/pr400263n

    Article  PubMed  CAS  Google Scholar 

  19. Toubal A, Kiaf B, Beaudoin L et al (2020) Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat Commun 11:1–20. https://doi.org/10.1038/s41467-020-17307-0

    Article  CAS  Google Scholar 

  20. Nagpal R, Newman TM, Wang S, et al (2018) Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet. In: J. Diabetes Res. https://www.hindawi.com/journals/jdr/2018/3462092/. Accessed 23 Feb 2021

  21. Higuchi BS, Rodrigues N, Gonzaga MI et al (2018) Intestinal dysbiosis in autoimmune diabetes is correlated with poor glycemic control and increased interleukin-6: a pilot study. Front Immunol. https://doi.org/10.3389/fimmu.2018.01689

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60. https://doi.org/10.1002/fes3.108

    Article  Google Scholar 

  23. Ren X-M, Kuo Y, Blumberg B (2020) Agrochemicals and obesity. Mol Cell Endocrinol 515:110926. https://doi.org/10.1016/j.mce.2020.110926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kwok L, Zhang J, Guo Z et al (2014) Characterization of fecal microbiota across seven Chinese ethnic groups by quantitative polymerase chain reaction. PLoS ONE 9:e93631. https://doi.org/10.1371/journal.pone.0093631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110. https://doi.org/10.1111/j.1552-6909.2009.01092.x

    Article  PubMed  Google Scholar 

  26. Siddoo-Atwal C (2019) An approach to cancer risk assessment and carcinogenic potential for three classes of agricultural pesticides. In: Peshin R, Dhawan AK (eds) Natural resource management: ecological perspectives. Springer International Publishing, Cham, pp 109–132

    Chapter  Google Scholar 

  27. Dong W, Zhang Y, Quan X (2020) Health risk assessment of heavy metals and pesticides: a case study in the main drinking water source in Dalian, China. Chemosphere 242:125113. https://doi.org/10.1016/j.chemosphere.2019.125113

    Article  PubMed  CAS  Google Scholar 

  28. Hayat K, Afzal M, Aqueel MA et al (2019) Insecticide toxic effects and blood biochemical alterations in occupationally exposed individuals in Punjab, Pakistan. Sci Total Environ 655:102–111. https://doi.org/10.1016/j.scitotenv.2018.11.175

    Article  PubMed  CAS  Google Scholar 

  29. Intranuovo G, Schiavulli N, Cavone D et al (2018) Assessment of DNA damages in lymphocytes of agricultural workers exposed to pesticides by comet assay in a cross-sectional study. Biomarkers 23:462–473. https://doi.org/10.1080/1354750X.2018.1443513

    Article  PubMed  CAS  Google Scholar 

  30. Sapbamrer R, Khacha-ananda S, Sittitoon N et al (2019) A longitudinal follow-up study of oxidative stress and DNA damage among farmers exposed to pesticide mixtures. Environ Sci Pollut Res 26:13185–13194. https://doi.org/10.1007/s11356-019-04650-z

    Article  CAS  Google Scholar 

  31. Kim K-H, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    Article  PubMed  CAS  Google Scholar 

  32. Abolhassani M, Asadikaram G, Paydar P et al (2019) Organochlorine and organophosphorous pesticides may induce colorectal cancer; a case-control study. Ecotoxicol Environ Saf 178:168–177. https://doi.org/10.1016/j.ecoenv.2019.04.030

    Article  PubMed  CAS  Google Scholar 

  33. Ross GW, Abbott RD, Petrovitch H et al (2019) Association of brain heptachlor epoxide and other organochlorine compounds with lewy pathology. Mov Disord 34:228–235. https://doi.org/10.1002/mds.27594

    Article  PubMed  CAS  Google Scholar 

  34. Rodríguez-Alcalá LM, Sá C, Pimentel LL et al (2015) Endocrine disruptor dde associated with a high-fat diet enhances the impairment of liver fatty acid composition in rats. J Agric Food Chem 63:9341–9348. https://doi.org/10.1021/acs.jafc.5b03274

    Article  PubMed  CAS  Google Scholar 

  35. Rauh VA, Garcia WE, Whyatt RM et al (2015) Prenatal exposure to the organophosphate pesticide chlorpyrifos and childhood tremor. Neurotoxicology 51:80–86. https://doi.org/10.1016/j.neuro.2015.09.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shrestha S, Parks CG, Umbach DM et al (2020) Pesticide use and incident Parkinson’s disease in a cohort of farmers and their spouses. Environ Res 191:110186. https://doi.org/10.1016/j.envres.2020.110186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Addissie YA, Kruszka P, Troia A et al (2020) Prenatal exposure to pesticides and risk for holoprosencephaly: a case-control study. Environ Health 19:65. https://doi.org/10.1186/s12940-020-00611-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Boulanger M, Tual S, Lemarchand C et al (2018) Lung cancer risk and occupational exposures in crop farming: results from the AGRIculture and CANcer (AGRICAN) cohort. Occup Environ Med 75:776–785. https://doi.org/10.1136/oemed-2017-104976

    Article  PubMed  Google Scholar 

  39. Piel C, Pouchieu C, Migault L et al (2019) Increased risk of central nervous system tumours with carbamate insecticide use in the prospective cohort AGRICAN. Int J Epidemiol 48:512–526. https://doi.org/10.1093/ije/dyy246

    Article  PubMed  Google Scholar 

  40. Joly Condette C, Bach V, Mayeur C et al (2015) Chlorpyrifos exposure during perinatal period affects intestinal microbiota associated with delay of maturation of digestive tract in rats. J Pediatr Gastroenterol Nutr 61:30–40. https://doi.org/10.1097/MPG.0000000000000734

    Article  PubMed  CAS  Google Scholar 

  41. Li J-W, Fang B, Pang G-F et al (2019) Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. Pestic Biochem Physiol 159:68–79. https://doi.org/10.1016/j.pestbp.2019.05.018

    Article  PubMed  CAS  Google Scholar 

  42. Reygner J, Joly Condette C, Bruneau A et al (2016) Changes in composition and function of human intestinal microbiota exposed to chlorpyrifos in oil as assessed by the SHIME® model. Int J Environ Res Public Health 13:1088. https://doi.org/10.3390/ijerph13111088

    Article  PubMed Central  CAS  Google Scholar 

  43. Liang Y, Zhan J, Liu D et al (2019) Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 7:19. https://doi.org/10.1186/s40168-019-0635-4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eskenazi B, Chevrier J, Rosas LG et al (2009) The pine river statement: human health consequences of DDT use. Environ Health Perspect 117:1359–1367. https://doi.org/10.1289/ehp.11748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. La Merrill MA, Krigbaum NY, Cirillo PM, Cohn BA (2020) Association between maternal exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and risk of obesity in middle age. Int J Obes 44:1723–1732. https://doi.org/10.1038/s41366-020-0586-7

    Article  CAS  Google Scholar 

  46. Swanson N, Leu A, Abrahamson J, Wallet B (2014) Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. J Org Syst 9:6–37

    Google Scholar 

  47. Cano-Sancho G, Salmon AG, La Merrill MA (2017) Association between exposure to p, p’-DDT and its metabolite p, p’-DDE with obesity: integrated systematic review and meta-analysis. Environ Health Perspect 125:096002. https://doi.org/10.1289/EHP527

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tang-Péronard JL, Jensen TK, Andersen HR et al (2015) Associations between exposure to persistent organic pollutants in childhood and overweight up to 12 years later in a low exposed danish population. Obes Facts 8:282–292. https://doi.org/10.1159/000438834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cupul-Uicab LA, Hernández-Ávila M, Terrazas-Medina EA et al (2010) Prenatal exposure to the major DDT metabolite 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and growth in boys from Mexico. Environ Res 110:595–603. https://doi.org/10.1016/j.envres.2010.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Høyer BB, Ramlau-Hansen CH, Henriksen TB et al (2014) Body mass index in young school-age children in relation to organochlorine compounds in early life: a prospective study. Int J Obes 38:919–925. https://doi.org/10.1038/ijo.2014.58

    Article  CAS  Google Scholar 

  51. Vafeiadi M, Georgiou V, Chalkiadaki G et al (2015) Association of prenatal exposure to persistent organic pollutants with obesity and cardiometabolic traits in early childhood: the rhea mother-child cohort (Crete, Greece). Environ Health Perspect 123:1015–1021. https://doi.org/10.1289/ehp.1409062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Delvaux I, Van Cauwenberghe J, Den Hond E et al (2014) Prenatal exposure to environmental contaminants and body composition at age 7–9 years. Environ Res 132:24–32. https://doi.org/10.1016/j.envres.2014.03.019

    Article  PubMed  CAS  Google Scholar 

  53. Agay-Shay K, Martinez D, Damaskini V et al (2015) Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect 123:1030–1037. https://doi.org/10.1289/ehp.1409049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Warner M, Wesselink A, Harley KG et al (2014) Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the chamacos study cohort. Am J Epidemiol 179:1312–1322. https://doi.org/10.1093/aje/kwu046

    Article  PubMed  PubMed Central  Google Scholar 

  55. Twum C, Wei Y (2011) The association between urinary concentrations of dichlorophenol pesticides and obesity in children. Rev Environ Health 26:215–219. https://doi.org/10.1515/reveh.2011.029

    Article  PubMed  CAS  Google Scholar 

  56. Park H, Kim K (2018) concentrations of 2,4-dichlorophenol and 2,5-dichlorophenol in urine of Korean adults. Int J Environ Res Public Health 15:589. https://doi.org/10.3390/ijerph15040589

    Article  PubMed Central  CAS  Google Scholar 

  57. Etzel TM, Engel SM, Quirós-Alcalá L et al (2020) Prenatal maternal organophosphorus pesticide exposures, paraoxonase 1, and childhood adiposity in the Mount Sinai Children’s Environmental Health Study. Environ Int 142:105858. https://doi.org/10.1016/j.envint.2020.105858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Andersen HR, Wohlfahrt-Veje C, Dalgård C et al (2012) Paraoxonase 1 polymorphism and prenatal pesticide exposure associated with adverse cardiovascular risk profiles at school age. PLoS ONE 7:e36830. https://doi.org/10.1371/journal.pone.0036830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Heindel JJ (2019) The developmental basis of disease: Update on environmental exposures and animal models. Basic Clin Pharmacol Toxicol 125:5–13. https://doi.org/10.1111/bcpt.13118

    Article  PubMed  CAS  Google Scholar 

  60. Park S, Kim S-K, Kim J-Y et al (2019) Exposure to pesticides and the prevalence of diabetes in a rural population in Korea. Neurotoxicology 70:12–18. https://doi.org/10.1016/j.neuro.2018.10.007

    Article  PubMed  CAS  Google Scholar 

  61. Daniels SI, Chambers JC, Sanchez SS et al (2018) Elevated levels of organochlorine pesticides in South Asian immigrants are associated with an increased risk of diabetes. J Endocr Soc 2:832–841. https://doi.org/10.1210/js.2017-00480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Juntarawijit C, Juntarawijit Y (2018) Association between diabetes and pesticides: a case-control study among Thai farmers. Environ Health Prev Med 23:3. https://doi.org/10.1186/s12199-018-0692-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. He B, Ni Y, Jin Y, Fu Z (2020) Pesticides-induced energy metabolic disorders. Sci Total Environ 729:139033. https://doi.org/10.1016/j.scitotenv.2020.139033

    Article  PubMed  CAS  Google Scholar 

  64. Han X, Zhang F, Meng L et al (2020) Exposure to organochlorine pesticides and the risk of type 2 diabetes in the population of East China. Ecotoxicol Environ Saf 190:110125. https://doi.org/10.1016/j.ecoenv.2019.110125

    Article  PubMed  CAS  Google Scholar 

  65. Montgomery MP, Kamel F, Saldana TM et al (2008) Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993–2003. Am J Epidemiol 167:1235–1246. https://doi.org/10.1093/aje/kwn028

    Article  PubMed  CAS  Google Scholar 

  66. Malekirad AA, Faghih M, Mirabdollahi M et al (2013) Neurocognitive, mental health, and glucose disorders in farmers exposed to organophosphorus pesticides. Arh Hig Rada Toksikol 64:1–8. https://doi.org/10.2478/10004-1254-64-2013-2296

    Article  PubMed  CAS  Google Scholar 

  67. Kongtip P, Nankongnab N, Tipayamongkholgul M et al (2018) A cross-sectional investigation of cardiovascular and metabolic biomarkers among conventional and organic farmers in Thailand. Int J Environ Res Public Health 15:2590. https://doi.org/10.3390/ijerph15112590

    Article  PubMed Central  CAS  Google Scholar 

  68. Velmurugan G, Ramprasath T, Swaminathan K et al (2017) Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol 18:8. https://doi.org/10.1186/s13059-016-1134-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Raafat N, Abass MA, Salem HM (2012) Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clin Biochem 45:1591–1595. https://doi.org/10.1016/j.clinbiochem.2012.07.108

    Article  PubMed  CAS  Google Scholar 

  70. Alavanja MC, Sandler DP, McMaster SB et al (1996) The agricultural health study. Environ Health Perspect 104:362–369. https://doi.org/10.1289/ehp.96104362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Starling AP, Umbach DM, Kamel F et al (2014) Pesticide use and incident diabetes among wives of farmers in the agricultural health study. Occup Environ Med 71:629–635. https://doi.org/10.1136/oemed-2013-101659

    Article  PubMed  Google Scholar 

  72. Seesen M, Lucchini RG, Siriruttanapruk S et al (2020) Association between organophosphate pesticide exposure and insulin resistance in pesticide sprayers and nonfarmworkers. Int J Environ Res Public Health 17:8140. https://doi.org/10.3390/ijerph17218140

    Article  PubMed Central  CAS  Google Scholar 

  73. Uemura H, Arisawa K, Hiyoshi M et al (2009) Prevalence of Metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan’s general population. Environ Health Perspect 117:568–573. https://doi.org/10.1289/ehp.0800012

    Article  PubMed  CAS  Google Scholar 

  74. Uemura H, Arisawa K, Hiyoshi M et al (2008) Associations of environmental exposure to dioxins with prevalent diabetes among general inhabitants in Japan. Environ Res 108:63–68. https://doi.org/10.1016/j.envres.2008.06.002

    Article  PubMed  CAS  Google Scholar 

  75. Silverstone AE, Rosenbaum PF, Weinstock RS et al (2012) Polychlorinated Biphenyl (PCB) exposure and diabetes: results from the anniston community health survey. Environ Health Perspect 120:727–732. https://doi.org/10.1289/ehp.1104247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wang S-L, Tsai P-C, Yang C-Y, Leon Guo Y (2008) Increased risk of diabetes and polychlorinated biphenyls and dioxins. Diabetes Care 31:1574–1579. https://doi.org/10.2337/dc07-2449

    Article  PubMed  PubMed Central  Google Scholar 

  77. Son H-K, Kim S-A, Kang J-H et al (2010) Strong associations between low-dose organochlorine pesticides and type 2 diabetes in Korea. Environ Int 36:410–414. https://doi.org/10.1016/j.envint.2010.02.012

    Article  PubMed  CAS  Google Scholar 

  78. Codru N, Schymura MJ, Negoita S et al (2007) Diabetes in relation to serum levels of polychlorinated biphenyls and chlorinated pesticides in adult Native Americans. Environ Health Perspect 115:1442–1447. https://doi.org/10.1289/ehp.10315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Saldana TM, Basso O, Hoppin JA et al (2007) Pesticide exposure and self-reported gestational diabetes mellitus in the Agricultural Health Study. Diabetes Care 30:529–534. https://doi.org/10.2337/dc06-1832

    Article  PubMed  Google Scholar 

  80. Shapiro GD, Dodds L, Arbuckle TE et al (2016) Exposure to organophosphorus and organochlorine pesticides, perfluoroalkyl substances, and polychlorinated biphenyls in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: The MIREC study. Environ Res 147:71–81. https://doi.org/10.1016/j.envres.2016.01.040

    Article  PubMed  CAS  Google Scholar 

  81. Rahman ML, Zhang C, Smarr MM et al (2019) Persistent organic pollutants and gestational diabetes: a multi-center prospective cohort study of healthy US women. Environ Int 124:249–258. https://doi.org/10.1016/j.envint.2019.01.027

    Article  PubMed  CAS  Google Scholar 

  82. Nagaraju R, Joshi AKR, Rajini PS (2015) Organophosphorus insecticide, monocrotophos, possesses the propensity to induce insulin resistance in rats on chronic exposure. J Diabetes 7:47–59. https://doi.org/10.1111/1753-0407.12158

    Article  PubMed  CAS  Google Scholar 

  83. Nagaraju R, Joshi A, Vamadeva S, Rajini P (2020) Effect of chronic exposure to monocrotophos on white adipose tissue in rats and its association with metabolic dyshomeostasis. Hum Exp Toxicol 39:1190–1199. https://doi.org/10.1177/0960327120913080

    Article  PubMed  CAS  Google Scholar 

  84. Nagaraju R, Joshi AKR, Vamadeva SG, Rajini PS (2020) Deregulation of hepatic lipid metabolism associated with insulin resistance in rats subjected to chronic monocrotophos exposure. J Biochem Mol Toxicol 34:e22506. https://doi.org/10.1002/jbt.22506

    Article  PubMed  CAS  Google Scholar 

  85. Peris-Sampedro F, Cabré M, Basaure P et al (2015) Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. Environ Res 142:169–176. https://doi.org/10.1016/j.envres.2015.06.036

    Article  PubMed  CAS  Google Scholar 

  86. Reygner J, Lichtenberger L, Elmhiri G et al (2016) Inulin supplementation lowered the metabolic defects of prolonged exposure to chlorpyrifos from gestation to young adult stage in offspring rats. PLoS ONE 11:e0164614. https://doi.org/10.1371/journal.pone.0164614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Samarghandian S, Foadoddin M, Zardast M et al (2020) The impact of age-related sub-chronic exposure to chlorpyrifos on metabolic indexes in male rats. Environ Sci Pollut Res 27:22390–22399. https://doi.org/10.1007/s11356-020-08814-0

    Article  CAS  Google Scholar 

  88. He W, Guo W, Qian Y et al (2015) Synergistic hepatotoxicity by cadmium and chlorpyrifos: disordered hepatic lipid homeostasis. Mol Med Rep 12:303–308. https://doi.org/10.3892/mmr.2015.3381

    Article  PubMed  CAS  Google Scholar 

  89. Howell GE III, Mulligan C, Young D, Kondakala S (2016) Exposure to chlorpyrifos increases neutral lipid accumulation with accompanying increased de novo lipogenesis and decreased triglyceride secretion in McArdle-RH7777 hepatoma cells. Toxicol In Vitro 32:181–189. https://doi.org/10.1016/j.tiv.2016.01.002

    Article  PubMed  CAS  Google Scholar 

  90. Abdollahi M, Mostafalou S, Pournourmohammadi S, Shadnia S (2004) Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to Malathion. Comp Biochem Physiol Part C Toxicol Pharmacol 137:29–34. https://doi.org/10.1016/j.cca.2003.11.002

    Article  CAS  Google Scholar 

  91. Abdollahi M, Donyavi M, Pournourmohammadi S, Saadat M (2004) Hyperglycemia associated with increased hepatic glycogen phosphorylase and phosphoenolpyruvate carboxykinase in rats following subchronic exposure to Malathion. Comp Biochem Physiol Part C Toxicol Pharmacol 137:343–347. https://doi.org/10.1016/j.cca.2004.03.009

    Article  CAS  Google Scholar 

  92. Rezg R, Mornagui B, Kamoun A et al (2007) Effect of subchronic exposure to Malathion on metabolic parameters in the rat. C R Biol 330:143–147. https://doi.org/10.1016/j.crvi.2006.11.002

    Article  PubMed  CAS  Google Scholar 

  93. Vosough-Ghanbari S, Sayyar P, Pournourmohammadi S et al (2007) Stimulation of insulin and glucagon synthesis in rat langerhans islets by Malathion in vitro: evidence for mitochondrial interaction and involvement of subcellular non-cholinergic mechanisms. Pestic Biochem Physiol 89:130–136. https://doi.org/10.1016/j.pestbp.2007.05.001

    Article  CAS  Google Scholar 

  94. Shrestha S, Singh VK, Sarkar SK et al (2020) Effect of sub-toxic exposure to Malathion on glucose uptake and insulin signaling in L6 myoblast derived myotubes. Drug Chem Toxicol 43:663–670. https://doi.org/10.1080/01480545.2018.1531881

    Article  PubMed  CAS  Google Scholar 

  95. Ribeiro TA, Prates KV, Pavanello A et al (2016) Acephate exposure during a perinatal life program to type 2 diabetes. Toxicology 372:12–21. https://doi.org/10.1016/j.tox.2016.10.010

    Article  PubMed  CAS  Google Scholar 

  96. Martini CN, Gabrielli M, del Vila M, C, (2012) A commercial formulation of glyphosate inhibits proliferation and differentiation to adipocytes and induces apoptosis in 3T3-L1 fibroblasts. Toxicol In Vitro 26:1007–1013. https://doi.org/10.1016/j.tiv.2012.04.017

    Article  PubMed  CAS  Google Scholar 

  97. Martini CN, Gabrielli M, Brandani JN, del Vila M, C, (2016) Glyphosate inhibits PPAR gamma induction and differentiation of preadipocytes and is able to induce oxidative stress. J Biochem Mol Toxicol 30:404–413. https://doi.org/10.1002/jbt.21804

    Article  PubMed  CAS  Google Scholar 

  98. Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res Mutat Res 543:251–272. https://doi.org/10.1016/S1383-5742(03)00015-2

    Article  PubMed  CAS  Google Scholar 

  99. Pastor S, Creus A, Parrón T et al (2003) Biomonitoring of four European populations occupationally exposed to pesticides: use of micronuclei as biomarkers. Mutagenesis 18:249–258. https://doi.org/10.1093/mutage/18.3.249

    Article  PubMed  CAS  Google Scholar 

  100. Hernández AF, Gil F, Lacasaña M (2017) Toxicological interactions of pesticide mixtures: an update. Arch Toxicol 91:3211–3223. https://doi.org/10.1007/s00204-017-2043-5

    Article  PubMed  CAS  Google Scholar 

  101. Mesnage R, Defarge N, Rocque L-M et al (2015) Laboratory rodent diets contain toxic levels of environmental contaminants: implications for regulatory tests. PLoS ONE 10:e0128429. https://doi.org/10.1371/journal.pone.0128429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Serge A, Carpy JD, Kobel W (2000) HEALTH risk of low-dose pesticides mixtures: a review of the 1985–1998 literature on combination toxicology and health risk assessment. J Toxicol Environ Health Part B 3:1–25. https://doi.org/10.1080/109374000281122

    Article  Google Scholar 

  103. Zarn JA, O’Brien CD (2018) Current pesticide dietary risk assessment in light of comparable animal study NOAELs after chronic and short-termed exposure durations. Arch Toxicol 92:157–167. https://doi.org/10.1007/s00204-017-2052-4

    Article  PubMed  CAS  Google Scholar 

  104. Brancato A, Brocca D, Ferreira L et al (2018) Use of EFSA pesticide residue intake model (EFSA PRIMo revision 3). EFSA J 16:e05147. https://doi.org/10.2903/j.efsa.2018.5147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Matthews G (2015) Pesticides: health. Safety and the environment. John Wiley & Sons

    Book  Google Scholar 

  106. de Clercq NC, Groen AK, Romijn JA, Nieuwdorp M (2016) Gut microbiota in obesity and undernutrition. Adv Nutr 7:1080–1089. https://doi.org/10.3945/an.116.012914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

    Article  PubMed  CAS  Google Scholar 

  108. Kallus SJ, Brandt LJ (2012) The intestinal microbiota and obesity. J Clin Gastroenterol 46:16–24. https://doi.org/10.1097/MCG.0b013e31823711fd

    Article  PubMed  Google Scholar 

  109. Clarke G, Stilling RM, Kennedy PJ et al (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238. https://doi.org/10.1210/me.2014-1108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339. https://doi.org/10.1136/gutjnl-2015-309990

    Article  PubMed  Google Scholar 

  111. Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00494

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zmora N, Suez J, Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16:35–56. https://doi.org/10.1038/s41575-018-0061-2

    Article  PubMed  CAS  Google Scholar 

  113. Butel M-J, Waligora-Dupriet A-J, Wydau-Dematteis S (2018) The developing gut microbiota and its consequences for health. J Dev Orig Health Dis 9:590–597. https://doi.org/10.1017/S2040174418000119

    Article  PubMed  Google Scholar 

  114. Koliada A, Syzenko G, Moseiko V et al (2017) Association between body mass index and firmicutes/bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 17:120. https://doi.org/10.1186/s12866-017-1027-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Magne F, Gotteland M, Gauthier L et al (2020) The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12:1474. https://doi.org/10.3390/nu12051474

    Article  PubMed Central  CAS  Google Scholar 

  116. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a

    Article  PubMed  CAS  Google Scholar 

  117. Mitev K, Taleski V (2019) Association between the gut microbiota and obesity. Open Access Maced J Med Sci 7:2050–2056. https://doi.org/10.3889/oamjms.2019.586

    Article  PubMed  PubMed Central  Google Scholar 

  118. de la Cuesta-Zuluaga J, Corrales-Agudelo V, Carmona JA et al (2018) Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. Int J Obes 42:424–432. https://doi.org/10.1038/ijo.2017.281

    Article  Google Scholar 

  119. Dominianni C, Sinha R, Goedert JJ et al (2015) Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE 10:e0124599. https://doi.org/10.1371/journal.pone.0124599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14. https://doi.org/10.1126/scitranslmed.3000322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Kocełak P, Zak-Gołąb A, Zahorska-Markiewic B et al (2013) Resting energy expenditure and gut microbiota in obese and normal weight subjects. Eur Rev Med Pharmacol Sci 17:2816–2821

    PubMed  Google Scholar 

  122. Kasai C, Sugimoto K, Moritani I et al (2015) Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol 15:100. https://doi.org/10.1186/s12876-015-0330-2

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen X, Sun H, Jiang F et al (2020) Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ. https://doi.org/10.7717/peerj.8317

    Article  PubMed  PubMed Central  Google Scholar 

  124. Selma MV, Romo-Vaquero M, García-Villalba R et al (2016) The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food Funct 7:1769–1774. https://doi.org/10.1039/C5FO01100K

    Article  PubMed  CAS  Google Scholar 

  125. Verdam FJ, Fuentes S, de Jonge C et al (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity 21:E607–E615. https://doi.org/10.1002/oby.20466

    Article  PubMed  CAS  Google Scholar 

  126. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TMS (2014) Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes 38:1525–1531. https://doi.org/10.1038/ijo.2014.46

    Article  CAS  Google Scholar 

  127. Furet J-P, Kong L-C, Tap J et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:3049–3057. https://doi.org/10.2337/db10-0253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Million M, Maraninchi M, Henry M et al (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36:817–825. https://doi.org/10.1038/ijo.2011.153

    Article  CAS  Google Scholar 

  129. Méndez-Salazar EO, Ortiz-López MG, de Granados-SilvestreLÁ, M et al (2018) Altered gut microbiota and compositional changes in firmicutes and proteobacteria in mexican undernourished and obese children. Front Microbiol 9:2494. https://doi.org/10.3389/fmicb.2018.02494

    Article  PubMed  PubMed Central  Google Scholar 

  130. Clarke SF, Murphy EF, Nilaweera K et al (2012) The gut microbiota and its relationship to diet and obesity. Gut Microbes 3:186–202. https://doi.org/10.4161/gmic.20168

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6:110–119. https://doi.org/10.4291/wjgp.v6.i4.110

    Article  PubMed  PubMed Central  Google Scholar 

  132. Schwiertz A, Taras D, Schäfer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obes Silver Spring Md 18:190–195. https://doi.org/10.1038/oby.2009.167

    Article  Google Scholar 

  133. Duncan SH, Lobley GE, Holtrop G et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32:1720–1724. https://doi.org/10.1038/ijo.2008.155

    Article  CAS  Google Scholar 

  134. Jumpertz R, Le DS, Turnbaugh PJ et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65. https://doi.org/10.3945/ajcn.110.010132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Scheepers LEJM, Penders J, Mbakwa CA et al (2015) The intestinal microbiota composition and weight development in children: the KOALA birth cohort study. Int J Obes 39:16–25. https://doi.org/10.1038/ijo.2014.178

    Article  CAS  Google Scholar 

  136. Santacruz A, Marcos A, Wärnberg J et al (2009) Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17:1906–1915. https://doi.org/10.1038/oby.2009.112

    Article  PubMed  Google Scholar 

  137. Santacruz A, Collado MC, García-Valdés L et al (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92. https://doi.org/10.1017/S0007114510000176

    Article  PubMed  CAS  Google Scholar 

  138. Moran CP, Shanahan F (2014) Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol 28:585–597. https://doi.org/10.1016/j.bpg.2014.07.005

    Article  PubMed  CAS  Google Scholar 

  139. Million M, Lagier J-C, Yahav D, Paul M (2013) Gut bacterial microbiota and obesity. Clin Microbiol Infect 19:305–313. https://doi.org/10.1111/1469-0691.12172

    Article  PubMed  CAS  Google Scholar 

  140. Santacruz A, Marcos A, Wärnberg J et al (2009) Interplay between weight loss and gut microbiota composition in overweight adolescents. Obes Silver Spring Md 17:1906–1915. https://doi.org/10.1038/oby.2009.112

    Article  Google Scholar 

  141. Olsen K, Danielsen K, Wilsgaard T et al (2013) Obesity and Staphylococcus aureus nasal colonization among women and men in a general population. PLoS ONE 8:e63716. https://doi.org/10.1371/journal.pone.0063716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Collado MC, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88:894–899. https://doi.org/10.1093/ajcn/88.4.894

    Article  PubMed  CAS  Google Scholar 

  143. Gao X, Jia R, Xie L et al (2015) Obesity in school-aged children and its correlation with Gut E.coli and Bifidobacteria: a case–control study. BMC Pediatr 15:64. https://doi.org/10.1186/s12887-015-0384-x

    Article  PubMed  PubMed Central  Google Scholar 

  144. Borgo F, Verduci E, Riva A et al (2016) Relative abundance in bacterial and fungal gut microbes in obese children: a case control study. Child Obes 13:78–84. https://doi.org/10.1089/chi.2015.0194

    Article  PubMed  Google Scholar 

  145. Dao MC, Everard A, Aron-Wisnewsky J et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436. https://doi.org/10.1136/gutjnl-2014-308778

    Article  PubMed  CAS  Google Scholar 

  146. Gálvez-Ontiveros Y, Páez S, Monteagudo C, Rivas A (2020) Endocrine disruptors in food: impact on gut microbiota and metabolic diseases. Nutrients. https://doi.org/10.3390/nu12041158

    Article  PubMed  PubMed Central  Google Scholar 

  147. Cook TJ, Shenoy SS (2003) Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat. Toxicology 184:125–133. https://doi.org/10.1016/S0300-483X(02)00555-3

    Article  PubMed  CAS  Google Scholar 

  148. Joly Condette C, Gay-Quéheillard J, Léké A et al (2013) Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 20:2726–2734. https://doi.org/10.1007/s11356-012-1283-4

    Article  CAS  Google Scholar 

  149. Daisley BA, Trinder M, McDowell TW et al (2018) Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02820-17

    Article  PubMed  PubMed Central  Google Scholar 

  150. Poet TS, Wu H, Kousba AA, Timchalk C (2003) In vitro rat hepatic and intestinal metabolism of the organophosphate pesticides chlorpyrifos and diazinon. Toxicol Sci 72:193–200. https://doi.org/10.1093/toxsci/kfg035

    Article  PubMed  CAS  Google Scholar 

  151. Guardia-Escote L, Basaure P, Biosca-Brull J et al (2020) APOE genotype and postnatal chlorpyrifos exposure modulate gut microbiota and cerebral short-chain fatty acids in preweaning mice. Food Chem Toxicol 135:110872. https://doi.org/10.1016/j.fct.2019.110872

    Article  PubMed  CAS  Google Scholar 

  152. Zhao Y, Zhang Y, Wang G et al (2016) Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (mus musculus). Chemosphere 153:287–293. https://doi.org/10.1016/j.chemosphere.2016.03.055

    Article  PubMed  CAS  Google Scholar 

  153. Wang X, Shen M, Zhou J, Jin Y (2019) Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish. Comp Biochem Physiol Part C Toxicol Pharmacol 216:19–28. https://doi.org/10.1016/j.cbpc.2018.11.010

    Article  CAS  Google Scholar 

  154. Krüger M, Shehata AA, Schrödl W, Rodloff A (2013) Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe 20:74–78. https://doi.org/10.1016/j.anaerobe.2013.01.005

    Article  PubMed  CAS  Google Scholar 

  155. Shehata AA, Schrödl W, AlaaA A et al (2013) The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 66:350–358. https://doi.org/10.1007/s00284-012-0277-2

    Article  PubMed  CAS  Google Scholar 

  156. Lee D-H, Steffes MW, Sjödin A et al (2011) Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS ONE 6:e15977. https://doi.org/10.1371/journal.pone.0015977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Zhan J, Liang Y, Liu D et al (2019) Pectin reduces environmental pollutant-induced obesity in mice through regulating gut microbiota: a case study of p, p′-DDE. Environ Int 130:104861. https://doi.org/10.1016/j.envint.2019.05.055

    Article  PubMed  CAS  Google Scholar 

  158. Jin Y, Zeng Z, Wu Y et al (2015) Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis. Toxicol Sci 147:116–126. https://doi.org/10.1093/toxsci/kfv115

    Article  PubMed  CAS  Google Scholar 

  159. Jin C, Zeng Z, Wang C et al (2018) Insights into a possible mechanism underlying the connection of carbendazim-induced lipid metabolism disorder and gut microbiota dysbiosis in mice. Toxicol Sci 166:382–393. https://doi.org/10.1093/toxsci/kfy205

    Article  PubMed  CAS  Google Scholar 

  160. Bei G, Xiaoming B, Mahbub Ridwan Lu, Kun, (2017) Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198–206. https://doi.org/10.1289/EHP202

    Article  Google Scholar 

  161. Zhang L, Nichols RG, Correll J et al (2015) Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 123:679–688. https://doi.org/10.1289/ehp.1409055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Fang B, Li JW, Zhang M et al (2018) Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem Toxicol 111:144–152. https://doi.org/10.1016/j.fct.2017.11.001

    Article  PubMed  CAS  Google Scholar 

  163. Kan H, Zhao F, Zhang X-X et al (2015) Correlations of gut microbial community shift with hepatic damage and growth inhibition of Carassius auratus induced by pentachlorophenol exposure. Environ Sci Technol 49:11894–11902. https://doi.org/10.1021/acs.est.5b02990

    Article  PubMed  CAS  Google Scholar 

  164. Chi Y, Lin Y, Zhu H et al (2018) PCBs–high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice. Environ Pollut 239:332–341. https://doi.org/10.1016/j.envpol.2018.04.001

    Article  PubMed  CAS  Google Scholar 

  165. Cani PD (2013) Gut microbiota and obesity: lessons from the microbiome. Brief Funct Genomics 12:381–387. https://doi.org/10.1093/bfgp/elt014

    Article  PubMed  CAS  Google Scholar 

  166. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI (2014) Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00190

    Article  PubMed  PubMed Central  Google Scholar 

  167. DiBaise J, Frank D, Mathur R (2012) Impact of the gut microbiota on the development of obesity: current concepts. Am J Gastroenterol Suppl 1:22–27. https://doi.org/10.1038/ajgsup.2012.5

    Article  CAS  Google Scholar 

  168. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

    Article  PubMed  CAS  Google Scholar 

  169. Graham C, Mullen A, Whelan K (2015) Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutr Rev 73:376–385. https://doi.org/10.1093/nutrit/nuv004

    Article  PubMed  Google Scholar 

  170. Guo S, Nighot M, Al-Sadi R et al (2015) Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol 195:4999–5010. https://doi.org/10.4049/jimmunol.1402598

    Article  PubMed  CAS  Google Scholar 

  171. Joly Condette C, Khorsi-Cauet H, Morlière P et al (2014) Increased gut permeability and bacterial translocation after chronic chlorpyrifos exposure in rats. PLoS ONE 9:e102217. https://doi.org/10.1371/journal.pone.0102217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Joly Condette C, Elion Dzon B, Hamdad F et al (2016) Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats. Gut Pathog 8:50. https://doi.org/10.1186/s13099-016-0129-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Sarron E, Pérot M, Barbezier N et al (2020) Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis. World J Gastroenterol 26:3145–3169. https://doi.org/10.3748/wjg.v26.i23.3145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. El-fakharany Y, Abdel Hamid O (2017) Toxic effects of chronic chlorpyrifos exposure on jejunum of adult male albino rats and the possible ameliorative role of propolis. Ain Shams J Forensic Med Clin Toxicol 28:28–41. https://doi.org/10.21608/ajfm.2017.18276

    Article  Google Scholar 

  175. Dalby MJ, Aviello G, Ross AW et al (2018) Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep 8:15648. https://doi.org/10.1038/s41598-018-33928-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Fuke N, Nagata N, Suganuma H, Ota T (2019) Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients 11:2277. https://doi.org/10.3390/nu11102277

    Article  PubMed Central  CAS  Google Scholar 

  177. Clemente-Postigo M, Oliva-Olivera W, Coin-Aragüez L et al (2018) Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. Am J Physiol-Endocrinol Metab 316:E319–E332. https://doi.org/10.1152/ajpendo.00277.2018

    Article  PubMed  CAS  Google Scholar 

  178. Liang H, Hussey SE, Sanchez-Avila A et al (2013) Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS ONE 8:e63983. https://doi.org/10.1371/journal.pone.0063983

    Article  PubMed  PubMed Central  Google Scholar 

  179. Pussinen PJ, Havulinna AS, Lehto M et al (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34:392–397. https://doi.org/10.2337/dc10-1676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Lindenberg FCB, Ellekilde M, Thörn AC et al (2019) Dietary LPS traces influences disease expression of the diet-induced obese mouse. Res Vet Sci 123:195–203. https://doi.org/10.1016/j.rvsc.2019.01.005

    Article  PubMed  CAS  Google Scholar 

  181. Gomes AC, Hoffmann C, Mota JF (2018) The human gut microbiota: metabolism and perspective in obesity. Gut Microbes 9:308–325. https://doi.org/10.1080/19490976.2018.1465157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481. https://doi.org/10.2337/db07-1403

    Article  PubMed  CAS  Google Scholar 

  183. Natividad JM, Lamas B, Pham HP et al (2018) Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun 9:2802. https://doi.org/10.1038/s41467-018-05249-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Jin C, Zeng Z, Fu Z, Jin Y (2016) Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice. Chemosphere 160:349–358. https://doi.org/10.1016/j.chemosphere.2016.06.105

    Article  PubMed  CAS  Google Scholar 

  185. Alhasson F, Das S, Seth R et al (2017) Altered gut microbiome in a mouse model of Gulf War illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS ONE 12:e0172914. https://doi.org/10.1371/journal.pone.0172914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Chang X, Wang X, Feng J et al (2020) Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.). Environ Pollut 259:113846. https://doi.org/10.1016/j.envpol.2019.113846

    Article  PubMed  CAS  Google Scholar 

  187. Tang Q, Tang J, Ren X, Li C (2020) Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. Environ Pollut 261:114129. https://doi.org/10.1016/j.envpol.2020.114129

    Article  PubMed  CAS  Google Scholar 

  188. Petriello MC, Hoffman JB, Vsevolozhskaya O et al (2018) Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut 242:1022–1032. https://doi.org/10.1016/j.envpol.2018.07.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Blaut M (2015) Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 74:227–234. https://doi.org/10.1017/S0029665114001700

    Article  PubMed  CAS  Google Scholar 

  190. Brusaferro A, Cozzali R, Orabona C et al (2018) Is it time to use probiotics to prevent or treat obesity? Nutrients. https://doi.org/10.3390/nu10111613

    Article  PubMed  PubMed Central  Google Scholar 

  191. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  192. Fernandes J, Su W, Rahat-Rozenbloom S et al (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4:e121–e121. https://doi.org/10.1038/nutd.2014.23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Riva A, Borgo F, Lassandro C et al (2017) Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol 19:95–105. https://doi.org/10.1111/1462-2920.13463

    Article  PubMed  CAS  Google Scholar 

  194. Barczyńska R, Litwin M, Sliżewska K et al (2018) Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Pol J Microbiol 67:339–345. https://doi.org/10.21307/pjm-2018-041

    Article  PubMed  PubMed Central  Google Scholar 

  195. Chen T, Kim CY, Kaur A et al (2017) Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct 8:1166–1173. https://doi.org/10.1039/c6fo01532h

    Article  PubMed  CAS  Google Scholar 

  196. Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723. https://doi.org/10.1073/pnas.0407076101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Zhang H, DiBaise JK, Zuccolo A et al (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106:2365–2370. https://doi.org/10.1073/pnas.0812600106

    Article  PubMed  PubMed Central  Google Scholar 

  198. Cornejo-Pareja I, Muñoz-Garach A, Clemente-Postigo M, Tinahones FJ (2019) Importance of gut microbiota in obesity. Eur J Clin Nutr 72:26–37. https://doi.org/10.1038/s41430-018-0306-8

    Article  PubMed  CAS  Google Scholar 

  199. Jin C, Xia J, Wu S et al (2018) Insights into a possible influence on gut microbiota and intestinal barrier function during chronic exposure of mice to imazalil. Toxicol Sci Off J Soc Toxicol 162:113–123. https://doi.org/10.1093/toxsci/kfx227

    Article  CAS  Google Scholar 

  200. Nasuti C, Coman MM, Olek RA et al (2016) Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ Sci Pollut Res Int 23:10930–10937. https://doi.org/10.1007/s11356-016-6297-x

    Article  PubMed  CAS  Google Scholar 

  201. Wu S, Jin C, Wang Y et al (2018) Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice. Environ Pollut 237:775–783. https://doi.org/10.1016/j.envpol.2017.10.129

    Article  PubMed  CAS  Google Scholar 

  202. Gibson GR, Roberfroid M (2008) Handbook of prebiotics. CRC Press

    Book  Google Scholar 

  203. Davani-Davari D, Negahdaripour M, Karimzadeh I et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8:92. https://doi.org/10.3390/foods8030092

    Article  PubMed Central  CAS  Google Scholar 

  204. Gibson GR (2008) Prebiotics as gut microflora management tools. J Clin Gastroenterol 42:S75. https://doi.org/10.1097/MCG.0b013e31815ed097

    Article  PubMed  Google Scholar 

  205. Gibson G, Scott K, Rastall R et al (2011) Dietary prebiotics: current status and new definition. Food Sci Technol Bull 7:1–19. https://doi.org/10.1616/1476-2137.15880

    Article  Google Scholar 

  206. Barczynska R, Bandurska K, Slizewska K et al (2015) Intestinal microbiota, obesity and prebiotics. Pol J Microbiol 64:93–100

    Article  CAS  PubMed  Google Scholar 

  207. He M, Shi B (2017) Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 7:54. https://doi.org/10.1186/s13578-017-0183-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Ehrlich SD (2011) MetaHIT: the European union project on metagenomics of the human intestinal tract. In: Nelson KE (ed) Metagenomics of the human body. Springer, New York, NY, pp 307–316

    Chapter  Google Scholar 

  209. Proctor LM, Creasy HH, Integrative HMP (iHMP) Research Network Consortium et al (2019) The integrative human microbiome project. Nature 569:641–648. https://doi.org/10.1038/s41586-019-1238-8

    Article  CAS  Google Scholar 

  210. Genta S, Cabrera W, Habib N et al (2009) Yacon syrup: beneficial effects on obesity and insulin resistance in humans. Clin Nutr 28:182–187. https://doi.org/10.1016/j.clnu.2009.01.013

    Article  PubMed  CAS  Google Scholar 

  211. Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89:1751–1759. https://doi.org/10.3945/ajcn.2009.27465

    Article  PubMed  CAS  Google Scholar 

  212. Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92:521–526. https://doi.org/10.1079/bjn20041225

    Article  PubMed  CAS  Google Scholar 

  213. Bindels LB, Dewulf EM, Delzenne NM (2013) GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 34:226–232. https://doi.org/10.1016/j.tips.2013.02.002

    Article  PubMed  CAS  Google Scholar 

  214. Dewulf EM, Cani PD, Neyrinck AM et al (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22:712–722. https://doi.org/10.1016/j.jnutbio.2010.05.009

    Article  PubMed  CAS  Google Scholar 

  215. Everard A, Lazarevic V, Derrien M et al (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786. https://doi.org/10.2337/db11-0227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Yin Y-N, Yu Q-F, Fu N et al (2010) Effects of four bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 16:3394–3401. https://doi.org/10.3748/wjg.v16.i27.3394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Delzenne NM, Kok N (2001) Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr 73:456S-458S. https://doi.org/10.1093/ajcn/73.2.456s

    Article  PubMed  CAS  Google Scholar 

  218. Kim YA, Keogh JB, Clifton PM (2018) Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr Res Rev 31:35–51. https://doi.org/10.1017/S095442241700018X

    Article  PubMed  CAS  Google Scholar 

  219. Mishra S, Wang S, Nagpal R et al (2019) Probiotics and prebiotics for the amelioration of type 1 diabetes: present and future perspectives. Microorganisms 7:67. https://doi.org/10.3390/microorganisms7030067

    Article  PubMed Central  CAS  Google Scholar 

  220. Million M, Angelakis E, Maraninchi M et al (2013) Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes 37:1460–1466. https://doi.org/10.1038/ijo.2013.20

    Article  CAS  Google Scholar 

  221. Shabana SSU, Irfan U (2018) The gut microbiota and its potential role in obesity. Future Microbiol 13:589–603. https://doi.org/10.2217/fmb-2017-0179

    Article  PubMed  CAS  Google Scholar 

  222. Da Silva CC, Monteil MA, Davis EM (2020) Overweight and obesity in children are associated with an abundance of firmicutes and reduction of bifidobacterium in their gastrointestinal microbiota. Child Obes 16:204–210. https://doi.org/10.1089/chi.2019.0280

    Article  PubMed  Google Scholar 

  223. Dong T, Guan Q, Hu W et al (2020) Prenatal exposure to glufosinate ammonium disturbs gut microbiome and induces behavioral abnormalities in mice. J Hazard Mater 389:122152. https://doi.org/10.1016/j.jhazmat.2020.122152

    Article  PubMed  CAS  Google Scholar 

  224. Perez-Fernandez C, Morales-Navas M, Aguilera-Sáez LM et al (2020) Medium and long-term effects of low doses of Chlorpyrifos during the postnatal, preweaning developmental stage on sociability, dominance, gut microbiota and plasma metabolites. Environ Res 184:109341. https://doi.org/10.1016/j.envres.2020.109341

    Article  PubMed  CAS  Google Scholar 

  225. Jin C, Yuan X, Wang C et al (2021) Maternal exposure to imazalil disrupts intestinal barrier and bile acids enterohepatic circulation tightly related IL-22 expression in F0, F1 and F2 generations of mice. J Hazard Mater 403:123668. https://doi.org/10.1016/j.jhazmat.2020.123668

    Article  PubMed  CAS  Google Scholar 

  226. Yan S, Tian S, Meng Z et al (2020) Imbalance of gut microbiota and fecal metabolites in offspring female mice induced by nitenpyram exposure during pregnancy. Chemosphere 260:127506. https://doi.org/10.1016/j.chemosphere.2020.127506

    Article  PubMed  CAS  Google Scholar 

  227. Smith L, Klément W, Dopavogui L et al (2020) Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice. Environ Int 144:106010. https://doi.org/10.1016/j.envint.2020.106010

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Khorsi-Cauet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djekkoun, N., Lalau, JD., Bach, V. et al. Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota. Eur J Nutr 60, 4131–4149 (2021). https://doi.org/10.1007/s00394-021-02548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02548-6

Keywords

Navigation