Skip to main content
Log in

Similar ergogenic effect of caffeine on anaerobic performance in men and women athletes

European Journal of Nutrition Aims and scope Submit manuscript

Cite this article

Abstract

Purpose

Caffeine is widely considered an ergogenic aid to increase anaerobic performance although most of this evidence is supported by investigations with only male samples. To date, it is unknown if the ergogenic effect of caffeine on anaerobic performance is of similar magnitude in men and women athletes. The aim of this study was to determine the magnitude of the ergogenic effect of caffeine on the Wingate test in men and women.

Methods

In a double-blind, placebo-controlled, cross-over experimental trial, ten women athletes and ten men athletes performed a 15-s adapted version of the Wingate test after ingesting 3 mg of caffeine per kg of body mass or a placebo (cellulose).

Results

In comparison to the performance obtained in the 15-s Wingate test with a placebo, caffeine increased peak power in men (9.9 ± 0.8 vs. 10.1 ± 0.8 W/kg, p < 0.01, d = 0.26) and in women (8.8 ± 0.9 vs. 9.1 ± 0.8 W/kg, p = 0.04, d = 0.30). Caffeine was also effective to increase the mean power in men (8.9 ± 0.7 vs. 9.0 ± 0.7 W/kg, p = 0.01, d = 0.21) and women (8.1 ± 0.7 vs. 8.3 ± 0.7 W/kg, p = 0.01, d = 0.27). The ergogenic effect of caffeine on the 15-s Wingate peak power (2.3 ± 3.2% in men and 3.2 ± 2.8% in women; p = 0.46) and mean power (2.0 ± 1.7% and 2.4 ± 2.3%, respectively; p = 0.93) was of similar magnitude in both sexes.

Conclusion

Acute ingestion of 3 mg kg−1 of caffeine enhanced peak and mean cycling power during a 15-s adapted version of the Wingate test in men and women and the ergogenic effect was of similar magnitude in both sexes. This information suggests that both men and women athletes might obtain similar benefits from caffeine supplementation during anaerobic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Davis JM, Zhao Z, Stock HS et al (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J PhysiolIntegr Comp Physiol 284:R399–R404. https://doi.org/10.1152/ajpregu.00386.2002

    Article  CAS  Google Scholar 

  2. Graham TE (2001) Caffeine and exercise metabolism, endurance and performance. Sport Med 31:785–807

    Article  CAS  Google Scholar 

  3. Ruíz-Moreno C, Lara B, Brito de Souza D et al (2020) Acute caffeine intake increases muscle oxygen saturation during a maximal incremental exercise test. Br J ClinPharmacol 86:861–867. https://doi.org/10.1111/bcp.14189

    Article  CAS  Google Scholar 

  4. Davis JK, Green JM (2009) Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sport Med 39:813–832

    Article  CAS  Google Scholar 

  5. Salinero JJ, Lara B, Ruiz-Vicente D et al (2017) CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients 9:269. https://doi.org/10.3390/nu9030269

    Article  CAS  PubMed Central  Google Scholar 

  6. Grgic J, Pickering C, Bishop DJ et al (2020) ADORA2A C allele carriers exhibit ergogenic responses to caffeine supplementation. Nutrients. https://doi.org/10.3390/nu12030741

    Article  PubMed  PubMed Central  Google Scholar 

  7. Woolf K, Bidwell WK, Carlson AG (2008) The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport NutrExercMetab 18:412–429. https://doi.org/10.1123/ijsnem.18.4.412

    Article  CAS  Google Scholar 

  8. Warnock R, Jeffries O, Patterson S, Waldron M (2017) The effects of caffeine, taurine, or caffeine-Taurine coingestion on repeat-sprint cycling performance and physiological responses. Int J Sports Physiol Perform 12:1341–1347. https://doi.org/10.1123/ijspp.2016-0570

    Article  PubMed  Google Scholar 

  9. San Juan AF, López-Samanes Á, Jodra P et al (2019) Caffeine supplementation improves anaerobic performance and neuromuscular efficiency and fatigue in Olympic-level boxers. Nutrients. https://doi.org/10.3390/nu11092120

    Article  PubMed  PubMed Central  Google Scholar 

  10. Greer F, McLean C, Graham TE (1998) Caffeine, performance, and metabolism during repeated Wingate exercise tests. J ApplPhysiol 85:1502–1508. https://doi.org/10.1152/jappl.1998.85.4.1502

    Article  CAS  Google Scholar 

  11. Greer F, Morales J, Coles M (2006) Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. ApplPhysiolNutrMetab 31:597–603. https://doi.org/10.1139/H06-030

    Article  Google Scholar 

  12. Bar-Or O (1987) The Wingate anaerobic test an update on methodology, reliability and validity. Sport Med AnInt J Appl Med Sci Sport Exerc 4:381–394. https://doi.org/10.2165/00007256-198704060-00001

    Article  CAS  Google Scholar 

  13. Maud PJ, Shultz BB (1989) Norms for the Wingate anaerobic test with comparison to another similar test. Res Q Exerc Sport 60:144–151. https://doi.org/10.1080/02701367.1989.10607429

    Article  CAS  PubMed  Google Scholar 

  14. Del Coso J, Mora-Rodríguez R (2006) Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. ApplPhysiolNutrMetab 31:186–189. https://doi.org/10.1139/H05-026

    Article  Google Scholar 

  15. Gacesa JPZ, Barak OF, Grujic NG (2009) Maximal anaerobic power test in athletes of different sport disciplines. J Strength Cond Res 23:751–755. https://doi.org/10.1519/JSC.0b013e3181a07a9a

    Article  Google Scholar 

  16. Jakovljević DK, Eric M, Jovanovic G et al (2018) Explosive muscle power assessment in elite athletes using Wingate anaerobic test. Rev Bras Med do Esporte 24:107–111. https://doi.org/10.1590/1517-869220182402183151

    Article  Google Scholar 

  17. Coppin E, Heath EM, Bressel E, Wagner DR (2012) Wingate anaerobic test reference values for male power athletes. Int J Sports Physiol Perform 7:232–236. https://doi.org/10.1123/ijspp.7.3.232

    Article  PubMed  Google Scholar 

  18. Baltazar-Martins JG, Brito de Souza D, Aguilar M et al (2019) Infographic. The road to the ergogenic effect of caffeine on exercise performance. Br J Sports Med. https://doi.org/10.1136/bjsports-2019-101018

    Article  PubMed  Google Scholar 

  19. Grgic J, Grgic I, Pickering C et al (2019) Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. Br J Sports Med 54:681–688

    Article  PubMed  Google Scholar 

  20. Salinero JJ, Lara B, Jiménez-Ormeño E et al (2019) More research is necessary to establish the ergogenic effect of caffeine in female athletes. Nutrients 11:1600

    Article  CAS  PubMed Central  Google Scholar 

  21. Lara B, Gutiérrez Hellín J, Ruíz-Moreno C et al (2020) Acute caffeine intake increases performance in the 15-s Wingate test during the menstrual cycle. Br J ClinPharmacol. https://doi.org/10.1111/bcp.14175

    Article  Google Scholar 

  22. Mahdavi R, Daneghian S, Jafari A, Homayouni A (2015) Effect of acute caffeine supplementation on anaerobic power and blood lactate levels in female athletes. J Caffeine Res 5:83–87. https://doi.org/10.1089/jcr.2014.0034

    Article  CAS  Google Scholar 

  23. Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J (2019) Time course of tolerance to the performance benefits of caffeine. PLoS ONE 14:e0210275. https://doi.org/10.1371/journal.pone.0210275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duncan MJ, Dobell AP, Caygill CL et al (2019) The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci 19:103–111. https://doi.org/10.1080/17461391.2018.1508505

    Article  PubMed  Google Scholar 

  25. Pereira LA, Curti JO, Camata TV et al (2010) Caffeine does not change the anaerobic performance and rate of muscle fatigue in young men and women. Med Sport 14:67–72. https://doi.org/10.2478/v10036-010-0013-6

    Article  Google Scholar 

  26. Collomp K, Ahmaidi S, Audran M et al (1991) Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med 12:439–443. https://doi.org/10.1055/s-2007-1024710

    Article  CAS  PubMed  Google Scholar 

  27. Anderson DE, LeGrand SE, McCart RD (2018) Effect of caffeine on sprint cycling in experienced cyclists. J Strength Cond Res 32:1. https://doi.org/10.1519/JSC.0000000000002685

    Article  Google Scholar 

  28. Forbes SC, Candow DG, Little JP et al (2007) Effect of Red Bull energy drink on repeated Wingate cycle performance and bench-press muscle endurance. Int J Sport NutrExercMetab 17:433–444. https://doi.org/10.1123/ijsnem.17.5.433

    Article  CAS  Google Scholar 

  29. Mielgo-Ayuso J, Marques-Jiménez D, Refoyo I et al (2019) Effect of caffeine supplementation on sports performance based on differences between sexes: a systematic review. Nutrients 11:2313. https://doi.org/10.3390/nu11102313

    Article  CAS  PubMed Central  Google Scholar 

  30. Sabblah S, Dixon D, Bottoms L (2015) Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp ExercPhysiol 11:89–94. https://doi.org/10.3920/CEP150010

    Article  Google Scholar 

  31. Adan A, Prat G, Fabbri M, Sànchez-Turet M (2008) Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. ProgNeuroPsychopharmacolBiol Psychiatry 32:1698–1703. https://doi.org/10.1016/j.pnpbp.2008.07.005

    Article  CAS  Google Scholar 

  32. Ou-Yang DS, Huang SL, Wang W et al (2000) Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J ClinPharmacol 49:145–151. https://doi.org/10.1046/j.1365-2125.2000.00128.x

    Article  CAS  Google Scholar 

  33. Granfors MT, Backman JT, Laitila J, Neuvonen PJ (2005) Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. ClinPharmacolTher 78:400–411. https://doi.org/10.1016/j.clpt.2005.06.009

    Article  CAS  Google Scholar 

  34. Kamimori GH, Joubert A, Otterstetter R et al (1999) The effect of the menstrual cycle on the pharmacokinetics of caffeine in normal, healthy eumenorrheic females. Eur J ClinPharmacol 55:445–449

    CAS  Google Scholar 

  35. Skinner TL, Desbrow B, Arapova J et al (2019) Women experience the same ergogenic response to caffeine as men. Med Sci Sports Exerc 51:1195–1202. https://doi.org/10.1249/MSS.0000000000001885

    Article  CAS  PubMed  Google Scholar 

  36. Clarke ND, Kirwan NA, Richardson DL (2019) Coffee ingestion improves 5 km cycling performance in men and women by a similar magnitude. Nutrients. https://doi.org/10.3390/nu11112575

    Article  PubMed  PubMed Central  Google Scholar 

  37. Romero-Moraleda B, Del CJ, Gutiérrez-Hellín J, Lara B (2019) The effect of caffeine on the velocity of half-squat exercise during the menstrual cycle: a randomized controlled trial. Nutrients. https://doi.org/10.3390/nu11112662

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lara B, Gutiérrez-Hellín J, García-Bataller A et al (2019) Ergogenic effects of caffeine on peak aerobic cycling power during the menstrual cycle. Eur J Nutr. https://doi.org/10.1007/s00394-019-02100-7

    Article  PubMed  Google Scholar 

  39. Vincent W, Weir J (2005) Statistics in kinesiology. Human Kinetics Publishers Inc., Champaign

    Google Scholar 

  40. Bühler E, Lachenmeier DW, Schlegel K, Winkler G (2014) Entwicklungeines Instruments zurAbschätzung der Koffeinaufnahme von Jugendlichen und jungenErwachsenen. ErnahrungsUmschau 61:58–63. https://doi.org/10.4455/eu.2014.011

    Article  Google Scholar 

  41. Filip A, Wilk M, Krzysztofik M, Del Coso J (2020) Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients. https://doi.org/10.3390/nu12041087

    Article  PubMed  PubMed Central  Google Scholar 

  42. Janse de Jonge XAK (2003) Effects of the menstrual cycle on exercise performance. Sport Med 33:833–851. https://doi.org/10.2165/00007256-200333110-00004

    Article  Google Scholar 

  43. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE (2011) Carbohydrates for training and competition. J Sports Sci 29:S17–S27. https://doi.org/10.1080/02640414.2011.585473

    Article  PubMed  Google Scholar 

  44. McDermott BP, Anderson SA, Armstrong LE et al (2017) National athletic trainers’ association position statement: fluid replacement for the physically active. J Athl Train 52:877–895. https://doi.org/10.4085/1062-6050-52.9.02

    Article  PubMed  PubMed Central  Google Scholar 

  45. Duncan MJ, Eyre E, Grgic J, Tallis J (2019) The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. Eur J Sport Sci. https://doi.org/10.1080/17461391.2019.1601261

    Article  PubMed  Google Scholar 

  46. de Boer MR, Waterlander WE, Kuijper LDJ et al (2015) Testing for baseline differences in randomized controlled trials: an unhealthy research behavior that is hard to eradicate. Int J BehavNutrPhys Act. https://doi.org/10.1186/s12966-015-0162-z

    Article  Google Scholar 

  47. Cohen J (1988) Statistical power analysis for the behavioral sciences, Second. LAWRENCE ERLBAUM ASSOCIATES

  48. Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1:50–57

    Article  PubMed  Google Scholar 

  49. Lara B, Gonzalez-Millán C, Salinero JJ et al (2014) Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 46:1385–1392. https://doi.org/10.1007/s00726-014-1709-z

    Article  CAS  PubMed  Google Scholar 

  50. Del Coso J, Muñoz-Fernández VE, Muñoz G et al (2012) Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 7:e31380. https://doi.org/10.1371/journal.pone.0031380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Del Coso J, Portillo J, Muñoz G et al (2013) Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 44:1511–1519. https://doi.org/10.1007/s00726-013-1473-5

    Article  CAS  PubMed  Google Scholar 

  52. Del Coso J, Ramírez JA, Muñoz G et al (2013) Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. ApplPhysiolNutrMetab 38:368–374. https://doi.org/10.1139/apnm-2012-0339

    Article  CAS  Google Scholar 

  53. Pérez-López A, Salinero JJ, Abian-Vicen J et al (2015) Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc 47:850–856. https://doi.org/10.1249/MSS.0000000000000455

    Article  PubMed  Google Scholar 

  54. Del Coso J, Pérez-López A, Abian-Vicen J et al (2014) Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int J Sports Physiol Perform 9:1013–1018. https://doi.org/10.1123/ijspp.2013-0448

    Article  PubMed  Google Scholar 

  55. Salinero JJ, Lara B, Abian-Vicen J et al (2014) The use of energy drinks in sport: perceived ergogenicity and side effects in male and female athletes. Br J Nutr 112:1494–1502. https://doi.org/10.1017/S0007114514002189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the participants for their invaluable contribution to the study.

Funding

This investigation did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Lara.

Ethics declarations

Conflict of interest

The authors declare no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years; and no other relationships or activities that could appear to have influenced the submitted work.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, B., Salinero, J.J., Giráldez-Costas, V. et al. Similar ergogenic effect of caffeine on anaerobic performance in men and women athletes. Eur J Nutr 60, 4107–4114 (2021). https://doi.org/10.1007/s00394-021-02510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02510-6

Keywords

Navigation