Skip to main content
Log in

Increased oral processing and a slower eating rate increase glycaemic, insulin and satiety responses to a mixed meal tolerance test

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Variations in specific oral processing behaviours may contribute to differences in glucose, insulin and satiety responses to a standardised test meal. This study tested how natural variations in oral processing between slower and faster eaters contribute to differences in post-prandial glucose (PP glucose), insulin response (PP insulin) and post-meal satiety for a standardised test meal.

Methods

Thirty-three participants with higher risk for type 2 diabetes consumed a standardised test-meal while being video recorded to derive specific oral processing behaviours. Plasma glucose, insulin and satiety measures were collected at baseline, during and post meal. Participants were split into slower and faster eaters using median split based on their eating rates and individual bolus properties were analysed at the point of swallow.

Results

There were large variations in eating rate (p < 0.001). While there was no significant difference in PP glucose response (p > 0.05), slower eaters showed significantly higher PP insulin between 45 and 60 min (p < 0.001). Slower eaters had longer oro-sensory exposure and increased bolus saliva uptake which was associated with higher PP glucose iAUC. Faster eating rate and larger bolus particle size at swallow correlated with lower PP glucose iAUC. A slower eating rate with greater chews per bite significantly increased insulin iAUC. Faster eaters also consistently rated their hunger and desire to eat higher than slower eaters (p < 0.05).

Conclusions

Natural variations in eating rate and the associated oral processing contributed to differences in PP glucose, PP insulin and satiety responses. Encouraging increased chewing and longer oral-exposure time during consumption, may promote early glucose absorption and greater insulin and satiety responses, and help support euglycaemia.

Trial Registration

ClinicalTrials.gov identifier: NCT04522063.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Software application are available from the corresponding author on reasonable request.

References

  1. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metab Clin Exp 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Ramachandran A, Snehalatha C (2010) Rising burden of obesity in Asia. J Obes 2010:868573. https://doi.org/10.1155/2010/868573

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y (2019) From Pre-diabetes to diabetes: diagnosis treatments and translational research. Medicina (Kaunas) 55(9):546. https://doi.org/10.3390/medicina55090546

    Article  Google Scholar 

  4. Ketema EB, Kibret KT (2015) Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis. Arch Public Health 73(1):43. https://doi.org/10.1186/s13690-015-0088-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kang X, Wang C, Chen D, Lv L, Liu G, Xiao J, Yang Y, He L, Chen L, Li X, Tian H, Jia W, Ran X (2015) Contributions of basal glucose and postprandial glucose concentrations to hemoglobin A1c in the newly diagnosed patients with type 2 diabetes–the preliminary study. Diabetes Technol Ther 17(7):445–448. https://doi.org/10.1089/dia.2014.0327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan VMH, Ooi DSQ, Kapur J, Wu T, Chan YH, Henry CJ, Lee YS (2016) The role of digestive factors in determining glycemic response in a multiethnic Asian population. Eur J Nutr 55(4):1573–1581. https://doi.org/10.1007/s00394-015-0976-0

    Article  CAS  PubMed  Google Scholar 

  7. Sun L, Ranawana DV, Tan WJ, Quek YC, Henry CJ (2015) The impact of eating methods on eating rate and glycemic response in healthy adults. Physiol Behav 139:505–510. https://doi.org/10.1016/j.physbeh.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  8. Sun L, Goh HJ, Govindharajulu P, Leow MK, Henry CJ (2020) Postprandial glucose, insulin and incretin responses differ by test meal macronutrient ingestion sequence (PATTERN study). Clin Nutr 39(3):950–957. https://doi.org/10.1016/j.clnu.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  9. Asif M (2014) The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J Educ Health Promot 3:1–1. https://doi.org/10.4103/2277-9531.127541

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mirmiran P, Bahadoran Z, Azizi F (2014) Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diabetes 5(3):267–281. https://doi.org/10.4239/wjd.v5.i3.267

    Article  PubMed  PubMed Central  Google Scholar 

  11. Maghsoudi Z, Azadbakht L (2012) How dietary patterns could have a role in prevention, progression, or management of diabetes mellitus? Review on the current evidence. J Res Med Sci 17(7):694–709

    PubMed  PubMed Central  Google Scholar 

  12. Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L (2013) Identification of differential responses to an oral glucose tolerance test in healthy adults. PLoS ONE 8(8):e72890–e72890. https://doi.org/10.1371/journal.pone.0072890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gibney ER (2020) Personalised nutrition—phenotypic and genetic variation in response to dietary intervention. Proc Nutr Soc 79(2):236–245. https://doi.org/10.1017/s0029665119001137

    Article  CAS  PubMed  Google Scholar 

  14. Brennan L (2017) Use of metabotyping for optimal nutrition. Curr Opin Biotechnol 44:35–38. https://doi.org/10.1016/j.copbio.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  15. Ketel EC, Aguayo-Mendoza MG, de Wijk RA, de Graaf C, Piqueras-Fiszman B, Stieger M (2019) Age, gender, ethnicity and eating capability influence oral processing behaviour of liquid, semi-solid and solid foods differently. Food Res Int 119:143–151. https://doi.org/10.1016/j.foodres.2019.01.048

    Article  PubMed  Google Scholar 

  16. Ferriday D, Bosworth ML, Godinot N, Martin N, Forde CG, Van Den Heuvel E, Appleton SL, Mercer Moss FJ, Rogers PJ, Brunstrom JM (2016) Variation in the oral processing of everyday meals is associated with fullness and meal size; a potential nudge to reduce energy intake? Nutrients 8(5):315. https://doi.org/10.3390/nu8050315

    Article  CAS  PubMed Central  Google Scholar 

  17. Zhu Y, Hsu WH, Hollis JH (2013) Increasing the number of masticatory cycles is associated with reduced appetite and altered postprandial plasma concentrations of gut hormones, insulin and glucose. Br J Nutr 110(2):384–390. https://doi.org/10.1017/s0007114512005053

    Article  CAS  PubMed  Google Scholar 

  18. Ranawana V, Clegg ME, Shafat A, Henry CJ (2011) Postmastication digestion factors influence glycemic variability in humans. Nutr Res 31(6):452–459. https://doi.org/10.1016/j.nutres.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  19. Vega-López S, Ausman LM, Griffith JL, Lichtenstein AH (2007) Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. Diabetes Care 30(6):1412–1417. https://doi.org/10.2337/dc06-1598

    Article  PubMed  Google Scholar 

  20. Ranawana V, Monro JA, Mishra S, Henry CJ (2010) Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability. Nutr Res 30(4):246–254. https://doi.org/10.1016/j.nutres.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  21. Ranawana V, Henry CJ, Pratt M (2010) Degree of habitual mastication seems to contribute to interindividual variations in the glycemic response to rice but not to spaghetti. Nutr Res 30(6):382–391. https://doi.org/10.1016/j.nutres.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  22. Read NW, Welch IM, Austen CJ, Barnish C, Bartlett CE, Baxter AJ, Brown G, Compton ME, Hume KE, Storie I et al (1986) Swallowing food without chewing; a simple way to reduce postprandial glycaemia. Br J Nutr 55(1):43–47. https://doi.org/10.1079/bjn19860008

    Article  CAS  PubMed  Google Scholar 

  23. Ranawana V, Leow MK, Henry CJ (2014) Mastication effects on the glycaemic index: impact on variability and practical implications. Eur J Clin Nutr 68(1):137–139. https://doi.org/10.1038/ejcn.2013.231

    Article  CAS  PubMed  Google Scholar 

  24. Campbell CL, Wagoner TB, Foegeding EA (2017) Designing foods for satiety: The roles of food structure and oral processing in satiation and satiety. Food Struct 13:1–12. https://doi.org/10.1016/j.foostr.2016.08.002

    Article  Google Scholar 

  25. Liu D, Deng Y, Sha L, Abul Hashem M, Gai S (2017) Impact of oral processing on texture attributes and taste perception. J Food Sci Technol 54(8):2585–2593. https://doi.org/10.1007/s13197-017-2661-1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Engelen L, Fontijn-Tekamp A, Avd B (2005) The influence of product and oral characteristics on swallowing. Arch Oral Biol 50(8):739–746. https://doi.org/10.1016/j.archoralbio.2005.01.004

    Article  PubMed  Google Scholar 

  27. Witt T, Stokes JR (2015) Physics of food structure breakdown and bolus formation during oral processing of hard and soft solids. Curr Opin Food Sci 3:110–117. https://doi.org/10.1016/j.cofs.2015.06.011

    Article  Google Scholar 

  28. Ghezzi EM, Lange LA, Ship JA (2000) Determination of variation of stimulated salivary flow rates. J Dent Res 79(11):1874–1878. https://doi.org/10.1177/00220345000790111001

    Article  CAS  PubMed  Google Scholar 

  29. Baum BJ (1993) Principles of saliva secretion. Ann N Y Acad Sci 694(1):17–23. https://doi.org/10.1111/j.1749-6632.1993.tb18338.x

    Article  CAS  PubMed  Google Scholar 

  30. Arhakis A, Karagiannis V, Kalfas S (2013) Salivary alpha-amylase activity and salivary flow rate in young adults. Open Dent J 7:7–15. https://doi.org/10.2174/1874210601307010007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peyrot des Gachons C, Breslin PAS (2016) Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep 16(10):102–102. https://doi.org/10.1007/s11892-016-0794-7

    Article  CAS  PubMed  Google Scholar 

  32. Mandel AL, Breslin PAS (2012) High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. J Nutr 142(5):853–858. https://doi.org/10.3945/jn.111.156984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clegg ME, Ranawana V, Shafat A, Henry CJ (2013) Soups increase satiety through delayed gastric emptying yet increased glycaemic response. Eur J Clin Nutr 67(1):8–11. https://doi.org/10.1038/ejcn.2012.152

    Article  CAS  PubMed  Google Scholar 

  34. Dalla Man C, Campioni M, Polonsky KS, Basu R, Rizza RA, Toffolo G, Cobelli C (2005) Two-hour seven-sample oral glucose tolerance test and meal protocol: minimal model assessment of beta-cell responsivity and insulin sensitivity in nondiabetic individuals. Diabetes 54(11):3265–3273. https://doi.org/10.2337/diabetes.54.11.3265

    Article  CAS  PubMed  Google Scholar 

  35. Granger DA, Kivlighan KT, Fortunato C, Harmon AG, Hibel LC, Schwartz EB, Whembolua G-L (2007) Integration of salivary biomarkers into developmental and behaviorally-oriented research: problems and solutions for collecting specimens. Physiol Behav 92(4):583–590. https://doi.org/10.1016/j.physbeh.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  36. Nascimento WV, Cassiani RA, Dantas RO (2012) Gender effect on oral volume capacity. Dysphagia 27(3):384–389. https://doi.org/10.1007/s00455-011-9379-4

    Article  PubMed  Google Scholar 

  37. Forde CG, van Kuijk N, Thaler T, de Graaf C, Martin N (2013) Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation. Appetite 60:208–219. https://doi.org/10.1016/j.appet.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  38. Eberhard L, Schindler HJ, Hellmann D, Schmitter M, Rammelsberg P, Giannakopoulos NN (2012) Comparison of particle-size distributions determined by optical scanning and by sieving in the assessment of masticatory performance. J Oral Rehabil 39(5):338–348. https://doi.org/10.1111/j.1365-2842.2011.02275.x

    Article  CAS  PubMed  Google Scholar 

  39. Rodrigues SA, Young AK, James BJ, Morgenstern MP (2014) Structural changes within a biscuit bolus during mastication. J Texture Stud 45(2):89–96. https://doi.org/10.1111/jtxs.12058

    Article  Google Scholar 

  40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  41. Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX (1995) The use of areas under curves in diabetes research. Diabetes Care 18(2):245–250. https://doi.org/10.2337/diacare.18.2.245

    Article  CAS  PubMed  Google Scholar 

  42. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TMS (2008) Glycaemic index methodology. Nutr Res Rev 18(1):145–171. https://doi.org/10.1079/NRR2005100

    Article  Google Scholar 

  43. McCrickerd K, Forde CG (2017) Consistency of eating rate, oral processing behaviours and energy intake across meals. Nutrients 9(8):891. https://doi.org/10.3390/nu9080891

    Article  PubMed Central  Google Scholar 

  44. Forde CG, Leong C, Chia-Ming E, McCrickerd K (2017) Fast or slow-foods? Describing natural variations in oral processing characteristics across a wide range of Asian foods. Food Funct 8(2):595–606. https://doi.org/10.1039/C6FO01286H

    Article  CAS  PubMed  Google Scholar 

  45. Lasschuijt M, Mars M, de Graaf C, Smeets PAM (2020) How oro-sensory exposure and eating rate affect satiation and associated endocrine responses—a randomized trial. Am J Clin Nutr 111(6):1137–1149. https://doi.org/10.1093/ajcn/nqaa067

    Article  PubMed  PubMed Central  Google Scholar 

  46. Katsarou V, Tsolaki M (2019) Chapter 3—Personalized nutrition by predicting glycemic responses. In: Galanakis CM (ed) Trends in personalized nutrition. Academic Press, pp 55–79. https://doi.org/10.1016/B978-0-12-816403-7.00003-9

  47. Argyrakopoulou G, Simati S, Dimitriadis G, Kokkinos A (2020) How important is eating rate in the physiological response to food intake, control of body weight, and glycemia? Nutrients 12(6):1734. https://doi.org/10.3390/nu12061734

    Article  CAS  PubMed Central  Google Scholar 

  48. Alberti G, Parada J, Rodrigo Cataldo L, Vega J, Aguilera CM, Alvarez-Mercado AI, Isabel Hodgson M, López A, Angellotti I, Gil A, Santos JL (2015) Glycemic response after starch consumption in relation to salivary amylase activity and copy-number variation of AMY1 gene. Food Nutr Res 3(8):558–563. https://doi.org/10.12691/jfnr-3-8-11

    Article  CAS  Google Scholar 

  49. Motoi L, Morgenstern MP, Hedderley DI, Wilson AJ, Balita S (2013) Bolus moisture content of solid foods during mastication. J Texture Stud 44(6):468–479. https://doi.org/10.1111/jtxs.12036

    Article  Google Scholar 

  50. Tournier C, Grass M, Septier C, Bertrand D, Salles C (2014) The impact of mastication, salivation and food bolus formation on salt release during bread consumption. Food Funct 5(11):2969–2980. https://doi.org/10.1039/C4FO00446A

    Article  CAS  PubMed  Google Scholar 

  51. Cassady BA, Hollis JH, Fulford AD, Considine RV, Mattes RD (2009) Mastication of almonds: effects of lipid bioaccessibility, appetite, and hormone response. Am J Clin Nutr 89(3):794–800. https://doi.org/10.3945/ajcn.2008.26669

    Article  CAS  PubMed  Google Scholar 

  52. Rigamonti AE, Agosti F, Compri E, Giunta M, Marazzi N, Muller EE, Cella SG, Sartorio A (2013) Anorexigenic postprandial responses of PYY and GLP1 to slow ice cream consumption: preservation in obese adolescents, but not in obese adults. Eur J Endocrinol 168(3):429–436. https://doi.org/10.1530/eje-12-0867

    Article  CAS  PubMed  Google Scholar 

  53. Kokkinos A, le Roux CW, Alexiadou K, Tentolouris N, Vincent RP, Kyriaki D, Perrea D, Ghatei MA, Bloom SR, Katsilambros N (2010) Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J Clin Endocrinol Metab 95(1):333–337. https://doi.org/10.1210/jc.2009-1018

    Article  CAS  PubMed  Google Scholar 

  54. Li J, Zhang N, Hu L, Li Z, Li R, Li C, Wang S (2011) Improvement in chewing activity reduces energy intake in one meal and modulates plasma gut hormone concentrations in obese and lean young Chinese men. Am J Clin Nutr 94(3):709–716. https://doi.org/10.3945/ajcn.111.015164

    Article  CAS  PubMed  Google Scholar 

  55. Miquel-Kergoat S, Azais-Braesco V, Burton-Freeman B, Hetherington MM (2015) Effects of chewing on appetite, food intake and gut hormones: A systematic review and meta-analysis. Physiol Behav 151:88–96. https://doi.org/10.1016/j.physbeh.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  56. Chaput JP, Tremblay A (2009) The glucostatic theory of appetite control and the risk of obesity and diabetes. Int J Obes 33(1):46–53. https://doi.org/10.1038/ijo.2008.221

    Article  Google Scholar 

  57. Wedick NM, Snijder MB, Dekker JM, Heine RJ, Stehouwer CDA, Nijpels G, van Dam RM (2009) Prospective investigation of metabolic characteristics in relation to weight gain in older adults: the Hoorn Study. Obesity 17(8):1609–1614. https://doi.org/10.1038/oby.2008.666

    Article  PubMed  Google Scholar 

  58. Teo PS, Forde CG (2020) The Impact of eating rate on energy intake, body composition, and health. In: Meiselman HL (ed) Handbook of eating and drinking: interdisciplinary perspectives. Springer International Publishing, Cham, pp 715–740. https://doi.org/10.1007/978-3-030-14504-0_120

    Chapter  Google Scholar 

  59. Fogel A, Goh AT, Fries LR, Sadananthan SA, Velan SS, Michael N, Tint MT, Fortier MV, Chan MJ, Toh JY, Chong YS, Tan KH, Yap F, Shek LP, Meaney MJ, Broekman BFP, Lee YS, Godfrey KM, Chong MFF, Forde CG (2017) Faster eating rates are associated with higher energy intakes during an ad libitum meal, higher BMI and greater adiposity among 4.5-year-old children: results from the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort. Br J Nutr 117(7):1042–1051. https://doi.org/10.1017/s0007114517000848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fogel A, Goh AT, Fries LR, Sadananthan SA, Velan SS, Michael N, Tint MT, Fortier MV, Chan MJ, Toh JY, Chong YS, Tan KH, Yap F, Shek LP, Meaney MJ, Broekman BFP, Lee YS, Godfrey KM, Chong MFF, Forde CG (2017) A description of an “obesogenic” eating style that promotes higher energy intake and is associated with greater adiposity in 4.5year-old children: results from the GUSTO cohort. Physiol Behav 176:107–116. https://doi.org/10.1016/j.physbeh.2017.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tanihara S, Imatoh T, Miyazaki M, Babazono A, Momose Y, Baba M, Uryu Y, Une H (2011) Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. Appetite 57(1):179–183. https://doi.org/10.1016/j.appet.2011.04.017

    Article  PubMed  Google Scholar 

  62. Teo PS, van Dam RM, Whitton C, Tan LWL, Forde CG (2020) Association between self-reported eating rate, energy intake, and cardiovascular risk factors in a multi-ethnic Asian population. Nutrients 12(4):1080. https://doi.org/10.3390/nu12041080

    Article  CAS  PubMed Central  Google Scholar 

  63. Brunstrom JM, Burn JF, Sell NR, Collingwood JM, Rogers PJ, Wilkinson LL, Hinton EC, Maynard OM, Ferriday D (2012) Episodic memory and appetite regulation in humans. PLoS ONE 7(12):e50707–e50707. https://doi.org/10.1371/journal.pone.0050707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Higgs S, Donohoe JE (2011) Focusing on food during lunch enhances lunch memory and decreases later snack intake. Appetite 57(1):202–206. https://doi.org/10.1016/j.appet.2011.04.016

    Article  PubMed  Google Scholar 

  65. Holt SHA, Miller JB (1995) Increased insulin responses to ingested foods are associated with lessened satiety. Appetite 24(1):43–54. https://doi.org/10.1016/S0195-6663(95)80005-0

    Article  CAS  PubMed  Google Scholar 

  66. McCrickerd K, Lim CM, Leong C, Chia EM, Forde CG (2017) Texture-based differences in eating rate reduce the impact of increased energy density and large portions on meal size in adults. J Nutr 147(6):1208–1217. https://doi.org/10.3945/jn.116.244251

    Article  CAS  PubMed  Google Scholar 

  67. Forde CG, van Kuijk N, Thaler T, de Graaf C, Martin N (2013) Texture and savoury taste influences on food intake in a realistic hot lunch time meal. Appetite 60(1):180–186. https://doi.org/10.1016/j.appet.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  68. Andrade AM, Greene GW, Melanson KJ (2008) Eating slowly led to decreases in energy intake within meals in healthy women. J Acad Nutr Diet 108(7):1186–1191. https://doi.org/10.1016/j.jada.2008.04.026

    Article  Google Scholar 

  69. James LJ, Maher T, Biddle J, Broom DR (2018) Eating with a smaller spoon decreases bite size, eating rate and ad libitum food intake in healthy young males. Br J Nutr 120(7):830–837. https://doi.org/10.1017/S0007114518002246

    Article  CAS  PubMed  Google Scholar 

  70. McClements DJ (2020) Future foods: a manifesto for research priorities in structural design of foods. Food Funct 11(3):1933–1945. https://doi.org/10.1039/C9FO02076D

    Article  CAS  PubMed  Google Scholar 

  71. Aguayo-Mendoza MG, Ketel EC, van der Linden E, Forde CG, Piqueras-Fiszman B, Stieger M (2019) Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Qual Prefer 71:87–95. https://doi.org/10.1016/j.foodqual.2018.06.006

    Article  Google Scholar 

  72. Devezeaux de Lavergne M, van de Velde F, Stieger M (2017) Bolus matters: the influence of food oral breakdown on dynamic texture perception. Food Funct 8(2):464–480. https://doi.org/10.1039/C6FO01005A

    Article  CAS  PubMed  Google Scholar 

  73. Wee MSM, Goh AT, Stieger M, Forde CG (2018) Correlation of instrumental texture properties from textural profile analysis (TPA) with eating behaviours and macronutrient composition for a wide range of solid foods. Food Funct 9(10):5301–5312. https://doi.org/10.1039/C8FO00791H

    Article  CAS  PubMed  Google Scholar 

  74. Forde CG (2018) From perception to ingestion; the role of sensory properties in energy selection, eating behaviour and food intake. Food Qual Prefer 66:171–177. https://doi.org/10.1016/j.foodqual.2018.01.010

    Article  Google Scholar 

  75. Besser REJ, Shields BM, Casas R, Hattersley AT, Ludvigsson J (2013) Lessons from the mixed-meal tolerance test. Diabetes Care 36(2):195. https://doi.org/10.2337/dc12-0836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feskens E, Brennan L, Dussort P, Flourakis M, Lindner LME, Mela D, Rabbani N, Rathmann W, Respondek F, Stehouwer C, Theis S, Thornalley P, Vinoy S (2020) Potential markers of dietary glycemic exposures for sustained dietary interventions in populations without diabetes. Adv Nutr. https://doi.org/10.1093/advances/nmaa058

    Article  PubMed  PubMed Central  Google Scholar 

  77. Færch K, Alssema M, Mela DJ, Borg R, Vistisen D (2018) Relative contributions of preprandial and postprandial glucose exposures, glycemic variability, and non-glycemic factors to HbA (1c) in individuals with and without diabetes. Nutr Diabetes 8(1):38. https://doi.org/10.1038/s41387-018-0047-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saito A, Kawai K, Yanagisawa M, Yokoyama H, Kuribayashi N, Sugimoto H, Oishi M, Wada T, Iwasaki K, Kanatsuka A, Yagi N, Okuguchi F, Miyazawa K, Arai K, Saito K, Sone H (2012) Self-reported rate of eating is significantly associated with body mass index in Japanese patients with type 2 diabetes Japan Diabetes Clinical Data Management Study Group (JDDM26). Appetite 59(2):252–255. https://doi.org/10.1016/j.appet.2012.05.009

    Article  PubMed  Google Scholar 

  79. Dye L, Blundell JE (1997) Menstrual cycle and appetite control: implications for weight regulation. Hum Reprod (Oxford, England) 12(6):1142–1151. https://doi.org/10.1093/humrep/12.6.1142

    Article  CAS  Google Scholar 

  80. Hirschberg AL (2012) Sex hormones, appetite and eating behaviour in women. Maturitas 71(3):248–256. https://doi.org/10.1016/j.maturitas.2011.12.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Singapore Ministry of Health’s National Medical Research Council under its Centre Grant Programme (NMRC/CG/M009/2017_NUH/NUHS). GAT, CJYM, PS and FCG were supported by the Singapore Biomedical Research Council Food Structure Engineering for Nutrition and Health (Sub-grant Grant no. H18/01/a0/E11, Awarded to PI: Forde, C. G.).

Author information

Authors and Affiliations

Authors

Contributions

KCM, WC, VDRM and FCG Study design. GAT, CJYM and CXH Data collection. GAT, CJYM, PS, FCG Data analysis. GAT, CJYM, FCG Writing. CXH, PS, KCM, WC, VDRM, FCG Review and edit. FCG Overall responsibility for the final manuscript.

Corresponding author

Correspondence to Ciarán Gerard Forde.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This study was approved by the National Healthcare Group Domain Specific Review Board (NHG DSRB, Ref: 2018/01220), Singapore.

Informed consent to participate

All participants gave written informed consent and were compensated for their time.

Informed consent for publication

All authors have seen and approved the final version of the manuscript. The article is the authors’ original work and has not received prior publication and is not under consideration for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, A.T., Choy, J.Y.M., Chua, X.H. et al. Increased oral processing and a slower eating rate increase glycaemic, insulin and satiety responses to a mixed meal tolerance test. Eur J Nutr 60, 2719–2733 (2021). https://doi.org/10.1007/s00394-020-02466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02466-z

Keywords

Navigation