Skip to main content
Log in

Buttermilk: an important source of lipid soluble forms of choline that influences the immune system development in Sprague–Dawley rat offspring

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

A Correction to this article was published on 17 October 2023

This article has been updated

Abstract

Purpose

To determine the effect of feeding buttermilk-derived choline metabolites on the immune system development in Sprague–Dawley rat pups.

Methods

Sprague–Dawley dams were randomized to one of the three diets containing 1.7 g/kg choline: 1-Control (100% free choline (FC)), 2-Buttermilk (BM, 37% phosphatidylcholine (PC), 34% sphingomyelin (SM), 17% glycerophosphocholine (GPC), 7% FC, 5% phosphocholine), and 3-Placebo (PB, 50% PC, 25% FC, 25% GPC) until the end of the lactation period. At weaning, pups continued on the same diet as their mom. Cell phenotypes and cytokine production by mitogen-stimulated splenocytes isolated from 3- and 10-week-old pups were measured.

Results

At 3 weeks, BM-pups had a higher proportion of cytotoxic T cells (CTL; CD3 + CD8 +) while both BM- and PB-pups had an increased proportion of cells expressing CD28 + , CD86 + and CD27 + (all p > 0.05). Following ConA stimulation, splenocytes from BM- and PB-pups produced more TNF-α and IFN-γ and after LPS stimulation produced more IL-10 and TNF-α (all p > 0.05). Starting at week 6 of age, BM-pups had a higher body weight. At 10 weeks, both the BM- and PB-pups had a higher proportion of CTL expressing CD27 + . After ConA stimulation, splenocytes from BM- and PB-pups produced more IL-2, IFN-γ and IL-6 and more IL-10 after LPS stimulation (all p > 0.05).

Conclusion

The proportion of lipid soluble forms of choline in the diet during lactation and weaning periods influence the immune system development in rat offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

Abbreviations

AA:

Arachidonic acid

ALA:

α-Linolenic acid

APC:

Antigen presenting cells

BM:

Buttermilk diet

ConA:

Concanavalin A

CTL:

Cytotoxic T cells

CTLA-4:

Cytotoxic T lymphocyte associated protein 4

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

FC:

Free choline

GALT:

Gut-associated lymphoid tissue

GPC:

Glycerophosphocholine

IFN-γ:

Interferon-gamma

Ig:

Immunoglobulin

IL:

Interleukin

LPS:

Lipopolysaccharide

MFGM:

Milk fat globule membrane

MUFA:

Monounsaturated fatty acid

n:

Omega

OVA:

Ovalbumin

PB:

Placebo diet

PC:

Phosphatidylcholine

Pcho:

Phosphocholine

PRRs:

Pattern recognition receptors

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acid

SM:

Sphingomyelin

TCR:

T cell receptor

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-alpha

References

  1. Basha S, Surendran N, Pichichero M (2014) Immune responses in neonates. Expert Rev Clin Immunol 10(9):1171–1184. https://doi.org/10.1586/1744666X.2014.942288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blumer N, Pfefferle PI, Renz H (2007) Development of mucosal immune function in the intrauterine and early postnatal environment. Curr Opin Gastroenterol 23(6):655–660. https://doi.org/10.1097/MOG.0b013e3282eeb428

    Article  CAS  PubMed  Google Scholar 

  3. Peters RL, Dang TD, Allen KJ (2016) Specific oral tolerance induction in childhood. Pediatr Allergy Immunol 27(8):784–794. https://doi.org/10.1111/pai.12620

    Article  PubMed  Google Scholar 

  4. Pabst O, Mowat AM (2012) Oral tolerance to food protein. Mucosal Immunol 5(3):232–239. https://doi.org/10.1038/mi.2012.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yaqoob P, Calder P (2011) The immune and inflammatory SYSTEMS. In: Lanham-New S, MacDonald IM, Roche HM (eds) Nutrition and metabolism. Wiley-Blackwell, Oxford

    Google Scholar 

  6. Prescott SL (2003) Early origins of allergic disease: a review of processes and influences during early immune development. Curr Opin Allergy Clin Immunol 3(2):125–132. https://doi.org/10.1097/01.all.0000064776.57552.32

    Article  CAS  PubMed  Google Scholar 

  7. Hollenbeck CB (2012) An introduction to the nutrition and metabolism of choline. Cent Nerv Syst Agents Med Chem 12(2):100–113. https://doi.org/10.2174/187152412800792689

    Article  CAS  PubMed  Google Scholar 

  8. Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250. https://doi.org/10.1146/annurev.nutr.26.061505.111156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dellschaft NS, Ruth MR, Goruk S, Lewis ED, Richard C, Jacobs RL et al (2015) Choline is required in the diet of lactating dams to maintain maternal immune function. Br J Nutr 113(11):1723–1731. https://doi.org/10.1017/S0007114515001221

    Article  CAS  PubMed  Google Scholar 

  10. Bremer J, Greenberg DM (1961) Methyl transfering enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochem Biophys Acta 46(2):205–216. https://doi.org/10.1016/0006-3002(61)90745-4

    Article  CAS  Google Scholar 

  11. Zhu X, Mar MH, Song J, Zeisel SH (2004) Deletion of the Pemt gene increases progenitor cell mitosis, DNA and protein methylation and decreases calretinin expression in embryonic day 17 mouse hippocampus. Brain Res Dev Brain Res 149(2):121–129. https://doi.org/10.1016/j.devbrainres.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  12. Richard C, Lewis ED, Goruk S, Wadge E, Curtis JM, Jacobs RL et al (2017) Feeding a mixture of choline forms to lactating dams improves the development of the immune system in Sprague-Dawley rat offspring. Nutrients. https://doi.org/10.3390/nu9060567

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lewis ED, Subhan FB, Bell RC, McCargar LJ, Curtis JM, Jacobs RL et al (2014) Estimation of choline intake from 24 h dietary intake recalls and contribution of egg and milk consumption to intake among pregnant and lactating women in Alberta. Br J Nutr 112(1):112–121. https://doi.org/10.1017/S0007114514000555

    Article  CAS  PubMed  Google Scholar 

  14. Vanderghem C, Bodson S, Danthine S, Paquot M, Deroanne C, Blecker C (2010) Milk fat globule membrane and buttermilks: From composition to valorization. Biotechnologie, Agronomie, Société et Environnement, p 14

    Google Scholar 

  15. Conway V, Gauthier SF, Pouliot Y (2014) Buttermilk: much more than a source of milk phospholipids. Animal Front 4(2):44–51. https://doi.org/10.2527/af.2014-0014

    Article  Google Scholar 

  16. Lopez C, Cauty C, Guyomarc’h F (2018) Unraveling the complexity of milk fat globules to tailor bioinspired emulsions providing health benefits: the key role played by the biological membrane. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.201800201

    Article  Google Scholar 

  17. Norris G, Porter C, Jiang C, Blesso CN (2017) Dietary milk sphingomyelin reduces systemic inflammation in diet-induced obese mice and inhibits LPS activity in macrophages. Beverages 3:37. https://doi.org/10.3390/beverages3030037

    Article  CAS  Google Scholar 

  18. Park EJ, Suh M, Thomson B, Ma DW, Ramanujam K, Thomson AB et al (2007) Dietary ganglioside inhibits acute inflammatory signals in intestinal mucosa and blood induced by systemic inflammation of Escherichia coli lipopolysaccharide. Shock 28(1):112–117. https://doi.org/10.1097/SHK.0b013e3180310fec

    Article  CAS  PubMed  Google Scholar 

  19. Azarcoya-Barrera J, Goruk S, Lewis ED, Pouliot Y, Curtis JM, Steele R et al (2020) Feeding buttermilk-derived choline forms during gestation and lactation modulates ex vivo T-cell response in rat dams. J Nutr. https://doi.org/10.1093/jn/nxaa089

    Article  PubMed  Google Scholar 

  20. Field CJ, Wu G, Metroz-Dayer MD, Montambault M, Marliss EB (1990) Lactate production is the major metabolic fate of glucose in splenocytes and is altered in spontaneously diabetic BB rats. Biochem J 272(2):445–452. https://doi.org/10.1097/00005176-200009000-00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Field CJ, Thomson CA, Van Aerde JE, Parrott A, Euler A, Lien E et al (2000) Lower proportion of CD45R0+ cells and deficient interleukin-10 production by formula-fed infants, compared with human-fed, is corrected with supplementation of long-chain polyunsaturated fatty acids. J Pediatr Gastroenterol Nutr 31(3):291–299

    Article  CAS  PubMed  Google Scholar 

  22. Blewett HJ, Gerdung CA, Ruth MR, Proctor SD, Field CJ (2009) Vaccenic acid favourably alters immune function in obese JCR:LA-cp rats. Br J Nutr 102(4):526–536. https://doi.org/10.1017/S0007114509231722

    Article  CAS  PubMed  Google Scholar 

  23. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951. https://doi.org/10.1093/jn/123.11.1939

    Article  CAS  PubMed  Google Scholar 

  24. Kawamura T, Okubo T, Sato K, Fujita S, Goto K, Hamaoka T et al (2012) Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults. Nutrition 28(11–12):1122–1126. https://doi.org/10.1016/j.nut.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  25. Vickers MH, Guan J, Gustavsson M, Krageloh CU, Breier BH, Davison M et al (2009) Supplementation with a mixture of complex lipids derived from milk to growing rats results in improvements in parameters related to growth and cognition. Nutr Res 29(6):426–435. https://doi.org/10.1016/j.nutres.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  26. Simon AK, Hollander GA, McMichael A (2015) Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282(1821):20143085. https://doi.org/10.1098/rspb.2014.3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adkins B, Bu Y, Guevara P (2001) The generation of Th memory in neonates versus adults: prolonged primary Th2 effector function and impaired development of Th1 memory effector function in murine neonates. J Immunol 166(2):918–925. https://doi.org/10.4049/jimmunol.166.2.918

    Article  CAS  PubMed  Google Scholar 

  28. Wilson CB, Westall J, Johnston L, Lewis DB, Dower SK, Alpert AR (1986) Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies. J Clin Invest 77(3):860–867. https://doi.org/10.1172/JCI112383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160. https://doi.org/10.1002/path.2287

    Article  CAS  PubMed  Google Scholar 

  30. Billiau A (1996) Interferon-gamma: biology and role in pathogenesis. Adv Immunol 62:61–130. https://doi.org/10.1016/s0065-2776(08)60428-9

    Article  CAS  PubMed  Google Scholar 

  31. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189. https://doi.org/10.1189/jlb.0603252

    Article  CAS  PubMed  Google Scholar 

  32. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11(9):372–377. https://doi.org/10.1016/s0962-8924(01)02064-5

    Article  CAS  PubMed  Google Scholar 

  33. Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leukoc Biol 60(1):8–26. https://doi.org/10.1002/jlb.60.1.8

    Article  CAS  PubMed  Google Scholar 

  34. Goldsby R, Kindt T, Osborne B, Kuby J (2003) Kuby Immunology. W.H. Freeman and Company, USA

  35. Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA et al (2018) Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 285(1):147–167. https://doi.org/10.1111/imr.12671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777. https://doi.org/10.4049/jimmunol.180.9.5771

    Article  CAS  PubMed  Google Scholar 

  37. Kasahara T, Hooks JJ, Dougherty SF, Oppenheim JJ (1983) Interleukin 2-mediated immune interferon (IFN-gamma) production by human T cells and T cell subsets. J Immunol 130(4):1784–1789

    Article  CAS  PubMed  Google Scholar 

  38. Dutton RW, Bradley LM, Swain SL (1998) T cell memory. Annu Rev Immunol 16:201–223. https://doi.org/10.1146/annurev.immunol.16.1.201

    Article  CAS  PubMed  Google Scholar 

  39. Reddy M, Eirikis E, Davis C, Davis HM, Prabhakar U (2004) Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods 293(1–2):127–142. https://doi.org/10.1016/j.jim.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  40. Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(Suppl 2):S3. https://doi.org/10.1186/ar1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822

    Article  CAS  PubMed  Google Scholar 

  42. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF et al (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101(2):311–320. https://doi.org/10.1172/JCI1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walker W, Aste-Amezaga M, Kastelein RA, Trinchieri G, Hunter CA (1999) IL-18 and CD28 use distinct molecular mechanisms to enhance NK cell production of IL-12-induced IFN-gamma. J Immunol 162(10):5894–5901

    Article  CAS  PubMed  Google Scholar 

  44. Ahmad S, Azid NA, Boer JC, Lim J, Chen X, Plebanski M et al (2018) The key role of TNF-TNFR2 interactions in the modulation of allergic inflammation: a review. Front Immunol 9:2572. https://doi.org/10.3389/fimmu.2018.02572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wawrzyniak M, O’Mahony L, Akdis M (2017) Role of Regulatory Cells in Oral Tolerance. Allergy Asthma Immunol Res 9(2):107–115. https://doi.org/10.4168/aair.2017.9.2.107

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Sherman A, Liao G, Leong KW, Daniell H, Terhorst C et al (2013) Mechanism of oral tolerance induction to therapeutic proteins. Adv Drug Deliv Rev 65(6):759–773. https://doi.org/10.1016/j.addr.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  47. Wambre E, Jeong D (2018) Oral tolerance development and maintenance. Immunol Allergy Clin North Am 38(1):27–37. https://doi.org/10.1016/j.iac.2017.09.003

    Article  PubMed  Google Scholar 

  48. Cebra JJ, Jiang HQ, Boiko N, H. T-H. (2005) The role of mucosal microbiota in the development, maintenance, and pathologies of the mucosal immune system. Mucosal Immunol. https://doi.org/10.1016/B978-012491543-5/50022-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical assistance of Emily Wadge, Reid Steele, Nicole Coursen and Marnie Newell. We express our gratitude to the undergraduate students that worked on the project.

Funding

This study was supported by a Dairy Farmers of Canada grant and Discovery grants from the Natural Sciences and Engineering Research Council of Canada. JAB is recipient of a PhD CONACYT (Consejo Nacional de Ciencia y Tecnología) scholarship from Mexico.

Author information

Authors and Affiliations

Authors

Contributions

CR, CJF, RLJ, YP and JMC designed and obtained funding for this study. SG, AM and JAB conducted research and analyzed data. JAB performed the statistical analysis and wrote the manuscript under the supervision of CR and RLJ. CR and CJF have primary responsibility for final content. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Caroline Richard.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarcoya-Barrera, J., Field, C.J., Goruk, S. et al. Buttermilk: an important source of lipid soluble forms of choline that influences the immune system development in Sprague–Dawley rat offspring. Eur J Nutr 60, 2807–2818 (2021). https://doi.org/10.1007/s00394-020-02462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02462-3

Keywords

Navigation