Skip to main content
Log in

A maternal high-fat/low-fiber diet impairs glucose tolerance and induces the formation of glycolytic muscle fibers in neonatal offspring

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

In our previous study, the maternal high-fat/low-fiber (HF-LF) diet was suggested to induce metabolic disorders and placental dysfunction of the dam, but the effects of this diet on glucose metabolism of neonatal offspring remain largely unknown. Here, a neonatal pig model was used to evaluate the effects of maternal HF-LF diet during pregnancy on glucose tolerance, transition of skeletal muscle fiber types, and mitochondrial function in offspring.

Methods

A total of 66 pregnant gilts (Guangdong Small-ear Spotted pig) at day 60 of gestation were randomly divided into two groups: control group (CON group; 2.86% crude fat, 9.37% crude fiber), and high-fat/low-fiber diet group (HF-LF group; 5.99% crude fat, 4.13% crude fiber).

Results

The maternal HF-LF diet was shown to impair the glucose tolerance of neonatal offspring, downregulate the protein level of slow-twitch fiber myosin heavy chain I (MyHC I), and upregulate the protein levels of fast-twitch fiber myosin heavy chain IIb (MyHC IIb) and IIx (MyHC IIx) in soleus muscle. Additionally, compared with the CON group, the HF-LF offspring showed inhibition of insulin signaling pathway and decrease in mitochondrial function in liver and soleus muscle.

Conclusion

Maternal HF-LF diet during pregnancy impairs glucose tolerance, induces the formation of glycolytic muscle fibers, and decreases the hepatic and muscular mitochondrial function in neonatal piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets are available from the corresponding author upon reasonable request.

References

  1. Skinner AC, Ravanbakht SN, Skelton JA et al (2018) Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics. https://doi.org/10.1542/peds.2017-3459

    Article  PubMed  Google Scholar 

  2. Dudele A, Hougaard KS, Kjolby M et al (2017) Chronic maternal inflammation or high-fat-feeding programs offspring obesity in a sex-dependent manner. Int J Obes 41:1420–1426. https://doi.org/10.1038/ijo.2017.136

    Article  CAS  Google Scholar 

  3. Huang YH, Ye TT, Liu CX et al (2017) Maternal high-fat diet impairs glucose metabolism, beta-cell function and proliferation in the second generation of offspring rats. Nutr Metab 14:67. https://doi.org/10.1186/s12986-017-0222-2

    Article  CAS  Google Scholar 

  4. Zhou P, Wang Y, Li S et al (2018) Effects of prebiotic inulin addition to low- or high-fat diet on maternal metabolic status and neonatal traits of offspring in a pregnant sow model. J Funct Foods 48:125–133. https://doi.org/10.1016/j.jff.2018.07.004

    Article  CAS  Google Scholar 

  5. Han S, Jiao J, Zhang W et al (2015) Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet. Sci Rep 5:15256. https://doi.org/10.1038/srep15256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hallam MC, Reimer RA (2013) A maternal high-protein diet predisposes female offspring to increased fat mass in adulthood whereas a prebiotic fibre diet decreases fat mass in rats. Br J Nutr 110:1732–1741. https://doi.org/10.1017/S0007114513000998

    Article  CAS  PubMed  Google Scholar 

  7. Amoasii L, Sanchez-Ortiz E, Fujikawa T et al (2019) NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci USA 116:11299–11308. https://doi.org/10.1073/pnas.1902490116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee KY, Singh MK, Ussar S et al (2015) Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nat Commun 6:8054. https://doi.org/10.1038/ncomms9054

    Article  CAS  PubMed  Google Scholar 

  9. Albers PH, Pedersen AJ, Birk JB et al (2015) Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes 64:485–497. https://doi.org/10.2337/db14-0590

    Article  CAS  PubMed  Google Scholar 

  10. Shen LY, Luo J, Lei HG et al (2015) Effects of muscle fiber type on glycolytic potential and meat quality traits in different Tibetan pig muscles and their association with glycolysis-related gene expression. Genet Mol Res 14:14366–14378. https://doi.org/10.4238/2015

    Article  PubMed  Google Scholar 

  11. Brandao SR, Ferreira R (2019) Exploring the contribution of mitochondrial dynamics to multiple acyl-CoA dehydrogenase deficiency-related phenotype. Arch Physiol Biochem 19:1–7. https://doi.org/10.1080/13813455.2019.1628065

    Article  CAS  Google Scholar 

  12. Ioja S, Singamsetty S, Corey C et al (2018) Nocturnal hypoxia improves glucose disposal, decreases mitochondrial efficiency, and increases reactive oxygen species in the muscle and liver of C57BL/6J mice independent of weight change. Oxid Med Cell Longev 2018:9649608. https://doi.org/10.1155/2018/9649608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fealy CE, Mulya A, Axelrod CL et al (2018) Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res 202:69–82. https://doi.org/10.1016/j.trsl.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  14. Vicente L, Natalia DLH, Antonio L et al (2017) Role of mitochondrial dysfunction in hypertension and obesity. Curr Hypertens Rep 19:11. https://doi.org/10.1007/s11906-017-0710-9

    Article  CAS  Google Scholar 

  15. Su X, Wang W, Fang C et al (2020) Vitamin K2 alleviates insulin resistance in skeletal muscle by improving mitochondrial function via SIRT1 signaling. Antioxid Redox Signal. https://doi.org/10.1089/ars.2019.7908

    Article  PubMed  Google Scholar 

  16. Hu C, Yang Y, Li J et al (2019) Maternal diet-induced obesity compromises oxidative stress status and angiogenesis in the porcine placenta by upregulating Nox2 expression. Oxid Med Cell Longev 9:2481592. https://doi.org/10.1155/2019/2481592

    Article  CAS  Google Scholar 

  17. Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3:179–184. https://doi.org/10.7150/ijbs.3.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pracy JP, White A, Mustafa Y et al (1998) The comparative anatomy of the pig middle ear cavity: a model for middle ear inflammation in the human? J Anat 192:359–368. https://doi.org/10.1046/j.1469-7580.1998.19230359.x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guiho T, Azevedo-Coste C, Guiraud D et al (2019) Validation of a methodology for neuro-urological and lumbosacral stimulation studies in domestic pigs: a human like animal model. J Neurosurg Spine 15:1–11. https://doi.org/10.3171/2018.11.SPINE18676

    Article  Google Scholar 

  20. Wang D, Pan J, Song G et al (2017) Abundance and significance of neuroligin-1 and neurexin II in the enteric nervous system of embryonic rats. Biomed Res Int 2017:1209360. https://doi.org/10.1155/2017/1209360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan C, Wei H, Ao J et al (2016) Inclusion of konjac flour in the gestation diet changes the gut microbiota, alleviates oxidative stress, and improves insulin sensitivity in sows. Appl Environ Microbiol 82:5899–5909. https://doi.org/10.1128/AEM.01374-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zou T, Chen D, Yang Q et al (2017) Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol 595:1547–1562. https://doi.org/10.1113/JP273478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Theil PK, Lauridsen C, Quesnel H (2014) Neonatal piglet survival: impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8:1021–1030. https://doi.org/10.1017/S1751731114000950

    Article  CAS  PubMed  Google Scholar 

  24. Theil PK, Cordero G, Henckel P et al (2017) Effects of gestation and transition diets, piglet birth weight, and fasting time on depletion of glycogen pools in liver and 3 muscles of newborn piglets. J Anim Sci 89:1805–1816. https://doi.org/10.2527/jas.2010-2856

    Article  CAS  Google Scholar 

  25. Moro C, Pillard F, de Glisezinski I et al (2007) Atrial natriuretic peptide contribution to lipid mobilization and utilization during head-down bed rest in humans. Am J Physiol Regul Integr Comp Physiol 293:R612–R617. https://doi.org/10.1152/ajpregu.00162.2007

    Article  CAS  PubMed  Google Scholar 

  26. Perälä MM, Hätönen KA, Virtamo J et al (2011) Impact of overweight and glucose tolerance on postprandial responses to high- and low-glycaemic index meals. Br J Nutr 105:1627–1634. https://doi.org/10.1017/S0007114510005477

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XY, Lou MF, Shen W et al (2017) A maternal low-fiber diet predisposes offspring to improved metabolic phenotypes in adulthood in an herbivorous rodent. Physiol Biochem Zool 90:75–84. https://doi.org/10.1086/688978

    Article  PubMed  Google Scholar 

  28. Sampath KA, Arun MG, Shastry BA et al (2019) Correlation between basal metabolic rate, visceral fat and insulin resistance among type 2 diabetes mellitus with peripheral neuropathy. Diabetes Metab Syndr 13:344–348. https://doi.org/10.1016/j.dsx.2018.10.005

    Article  Google Scholar 

  29. Sweeney EL, Jeromson S, Hamilton DL et al (2017) Skeletal muscle insulin signaling and whole-body glucose metabolism following acute sleep restriction in healthy males. Physiol Rep 5:e13498. https://doi.org/10.14814/phy2.13498

    Article  CAS  PubMed Central  Google Scholar 

  30. Lerat H, Imache MR, Polyte J et al (2017) Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J Biol Chem 292:12860–12873. https://doi.org/10.1074/jbc.M117.785030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song C, Liu D, Yang S et al (2018) Sericin enhances the insulin-PI3K/AKT signaling pathway in the liver of a type 2 diabetes rat model. Exp Ther Med 16:3345–3352. https://doi.org/10.3892/etm.2018.6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu Y, Du H, Wei S et al (2018) Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARgamma. Theranostics 8:2171–2188. https://doi.org/10.7150/thno.22565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shelley P, Martin-Gronert MS, Rowlerson A et al (2009) Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol 297:R675-681. https://doi.org/10.1152/ajpregu.00146.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi Z, Xia J, Xue X et al (2016) Long-term treatment with nicotinamide induces glucose intolerance and skeletal muscle lipotoxicity in normal chow-fed mice: compared to diet-induced obesity. J Nutr Biochem 36:31–41. https://doi.org/10.1016/j.jnutbio.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  35. Xirouchaki CE, Mangiafico SP, Bate K et al (2016) Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice. Molecular Metab 5:221–232. https://doi.org/10.1016/j.molmet.2016.01.004

    Article  CAS  Google Scholar 

  36. Pataky MW, Yu CS, Nie Y et al (2019) Skeletal muscle fiber type-selective effects of acute exercise on insulin-stimulated glucose uptake in insulin-resistant, high-fat-fed rats. Am J Physiol Endocrinol Metab 316:E695–E706. https://doi.org/10.1152/ajpendo.00482.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duan Y, Li F, Tan B et al (2017) Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Rev 18:647–659. https://doi.org/10.1111/obr.12530

    Article  PubMed  Google Scholar 

  38. Olsson AH, Ronn T, Elgzyri T et al (2011) The expression of myosin heavy chain (MHC) genes in human skeletal muscle is related to metabolic characteristics involved in the pathogenesis of type 2 diabetes. Mol Genet Metab 103:275–281. https://doi.org/10.1016/j.ymgme.2011.03.017

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira T, Manhães-de-Castro R, Silva JM et al (2018) Differential effects of maternal high-fat/high-caloric or isocaloric diet on offspring’s skeletal muscle phenotype. Life Sci 215:136–144. https://doi.org/10.1016/j.lfs.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  40. Hesselink MK, Schrauwen-Hinderling V, Schrauwen P (2016) Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 12:633–645. https://doi.org/10.1038/nrendo.2016.104

    Article  CAS  PubMed  Google Scholar 

  41. D’Souza K, Nzirorera C, Cowie AM et al (2018) Autotaxin-LPA signaling contributes to obesity-induced insulin resistance in muscle and impairs mitochondrial metabolism. J Lipid Res 59:1805–1817. https://doi.org/10.1194/jlr.M082008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choudhury M, Jonscher KR, Friedman JE (2011) Reduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat. Aging 3:175–178. https://doi.org/10.18632/aging.100289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rector RS, Thyfault JP, Uptergrove GM et al (2010) Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol 52:727–736. https://doi.org/10.1016/j.jhep.2009.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Firneisz G (2014) Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the liver disease of our age? World J Gastroenterol 20:9072–9089. https://doi.org/10.3748/wjg.v20.i27.9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geng J, Wei M, Yuan X et al (2019) TIGAR regulates mitochondrial functions through SIRT1-PGC1alpha pathway and translocation of TIGAR into mitochondria in skeletal muscle. FASEB J 33:6082–6098. https://doi.org/10.1096/fj.201802209R

    Article  CAS  PubMed  Google Scholar 

  46. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531. https://doi.org/10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

  47. Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801. https://doi.org/10.1038/nature00904

    Article  CAS  PubMed  Google Scholar 

  48. Marin TL, Gongol B, Zhang F et al (2017) AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal 10:eaaf7478. https://doi.org/10.1126/scisignal.aaf7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zou TD, Yu B, Yu J et al (2017) Mitochondrial biogenesis is decreased in skeletal muscle of pig fetuses exposed to maternal high-energy diets. Animal 11:54–60. https://doi.org/10.1017/S1751731116001269

    Article  CAS  PubMed  Google Scholar 

  50. McMurray F, MacFarlane M, Kim K et al (2019) Maternal diet-induced obesity alters muscle mitochondrial function in offspring without changing insulin sensitivity. FASEB J 33:13515–13526. https://doi.org/10.1096/fj.201901150R

    Article  CAS  PubMed  Google Scholar 

  51. Fink BD, Bai F, Yu L, Sheldon RD et al (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. J Biol Chem 293:19932–19941. https://doi.org/10.1074/jbc.RA118.005144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Almeida MJ, Luchsinger LL, Corrigan DJ et al (2017) Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 21:725–729. https://doi.org/10.1016/j.stem.2017.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present work was jointly supported by the Project of National Natural Science Foundation China (No. 31902165 and 31790411), Natural Science Foundation of Guangdong Province (2019A1515011443), and Innovation Team Project in Universities of Guangdong Province (2017KCXTD002).

Author information

Authors and Affiliations

Authors

Contributions

HCJ and TCQ designed the study; HCJ, HXY, WSQ and YLF acquired the data; HCJ, YYY, CMX, HXY, and WSQ carried out the experiments and data analysis; HCJ, TCQ, and YYL drafted and revised the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Chengquan Tan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The experimental design and procedure presented in this study were reviewed and approved by the Animal Care and Use Committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences under ethic approval number ISA-2018-046.

Consent for publication

All authors approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Yang, Y., Chen, M. et al. A maternal high-fat/low-fiber diet impairs glucose tolerance and induces the formation of glycolytic muscle fibers in neonatal offspring. Eur J Nutr 60, 2709–2718 (2021). https://doi.org/10.1007/s00394-020-02461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02461-4

Keywords

Navigation