Skip to main content
Log in

Resveratrol supplementation at old age reverts changes associated with aging in inflammatory, oxidative and apoptotic markers in rat heart

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Aging is known to play a critical role in the etiopathogenesis of several diseases. Among them, cardiovascular disorders are especially relevant since they are becoming the first cause of death in western countries. Resveratrol is a polyphenolic compound that has been shown to exert beneficial effects at different levels, including neuronal and cardiovascular protection. Those effects of resveratrol are related, at least in part, to its antioxidant and anti-inflammatory properties. In the current investigation we were interested in exploring whether the positive effects of resveratrol at cardiac level were taking place even when the supplementation started in already old animals.

Methods

Old male rats were supplemented with resveratrol during 10 weeks. Using RT-PCR, we analyzed the effects of resveratrol supplementation on the expression of different genes related to inflammation, oxidative stress and apoptosis in rat heart.

Results

Resveratrol reverted age-related changes in inflammatory, oxidative and apoptotic markers in the rat heart. Among others, the expression of two major inflammatory markers, INF-γ and TNF-α and two oxidative markers, heme oxygenase-1 and nitric oxide synthase, were increased with aging, and resveratrol supplementation reduced the level of some of these to those observed in the heart of young animals. Moreover, age-related changes in apoptotic markers in rat heart tend to be also reverted by resveratrol treatment.

Conclusion

Our results suggest that resveratrol might exert beneficial effects as an anti-aging compound to revert age-related changes in cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Council on E, Prevention Statistics C, Stroke Statistics S (2018) Heart disease and stroke statistics-2018 update: a report from the American heart association. Circulation 137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558

    Article  PubMed  Google Scholar 

  2. Paneni F, Diaz Canestro C, Libby P, Luscher TF, Camici GG (2017) The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 69(15):1952–1967. https://doi.org/10.1016/j.jacc.2017.01.064

    Article  PubMed  Google Scholar 

  3. Martin-Fernandez B, Gredilla R (2016) Mitochondria and oxidative stress in heart aging. Age (Dordr) 38(4):225–238. https://doi.org/10.1007/s11357-016-9933-y

    Article  CAS  Google Scholar 

  4. Matz RL, Schott C, Stoclet JC, Andriantsitohaina R (2000) Age-related endothelial dysfunction with respect to nitric oxide, endothelium-derived hyperpolarizing factor and cyclooxygenase products. Physiol Res 49(1):11–18

    CAS  PubMed  Google Scholar 

  5. Riancho JA, Zarrabeitia MT, Amado JA, Olmos JM, Gonzalez-Macias J (1994) Age-related differences in cytokine secretion. Gerontology 40(1):8–12

    Article  CAS  PubMed  Google Scholar 

  6. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484. https://doi.org/10.1126/science.1112125 (309/5733/481 [pii])

    Article  CAS  PubMed  Google Scholar 

  8. Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T, Someya S, Miyakawa T, Nakayama C, Samhan-Arias AK, Servais S, Barger JL, Portero-Otin M, Tanokura M, Prolla TA, Leeuwenburgh C (2010) Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS ONE 5(7):e11468. https://doi.org/10.1371/journal.pone.0011468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macchi B, Paola DR, Marino-Merlo F, Felice MR, Cuzzocrea S, Mastino A (2015) Inflammatory and cell death pathways in brain and peripheral blood in Parkinson’s disease. CNS Neurol Disord Drug Targets 14(3):313–324

    Article  CAS  PubMed  Google Scholar 

  10. Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24(4):458–466. https://doi.org/10.1097/00004647-200404000-00011

    Article  PubMed  Google Scholar 

  11. Gredilla R, Barja G (2005) Minireview: the role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 146(9):3713–3717. https://doi.org/10.1210/en.2005-0378

    Article  CAS  PubMed  Google Scholar 

  12. Ingram DK, de Cabo R (2017) Calorie restriction in rodents: caveats to consider. Ageing Res Rev 39:15–28. https://doi.org/10.1016/j.arr.2017.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li J, Zhang CX, Liu YM, Chen KL, Chen G (2017) A comparative study of anti-aging properties and mechanism: resveratrol and caloric restriction. Oncotarget 8(39):65717–65729. https://doi.org/10.18632/oncotarget.20084

    Article  PubMed  PubMed Central  Google Scholar 

  14. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. https://doi.org/10.1038/nature01960

    Article  CAS  PubMed  Google Scholar 

  15. Bitterman JL, Chung JH (2015) Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 72(8):1473–1488. https://doi.org/10.1007/s00018-014-1808-8

    Article  CAS  PubMed  Google Scholar 

  16. Almeida L, Vaz-da-Silva M, Falcao A, Soares E, Costa R, Loureiro AI, Fernandes-Lopes C, Rocha JF, Nunes T, Wright L, Soares-da-Silva P (2009) Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 53(Suppl 1):S7-15. https://doi.org/10.1002/mnfr.200800177

    Article  PubMed  Google Scholar 

  17. Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54(1):7–16. https://doi.org/10.1002/mnfr.200900437

    Article  CAS  PubMed  Google Scholar 

  18. Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD, Vasilinin G, Sen A, Schinas AM, Piccirilli G, Brown K, Steward WP, Gescher AJ, Brenner DE (2010) Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res 70(22):9003–9011. https://doi.org/10.1158/0008-5472.CAN-10-2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31. https://doi.org/10.4103/0976-0105.177703

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159. https://doi.org/10.1006/abio.1987.9999

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-∆∆C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  22. Tome-Carneiro J, Gonzalvez M, Larrosa M, Yanez-Gascon MJ, Garcia-Almagro FJ, Ruiz-Ros JA, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol in primary and secondary prevention of cardiovascular disease: a dietary and clinical perspective. Ann N Y Acad Sci 1290:37–51. https://doi.org/10.1111/nyas.12150

    Article  CAS  PubMed  Google Scholar 

  23. Dolinsky VW (1812) Dyck JR (2011) Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta 11:1477–1489. https://doi.org/10.1016/j.bbadis.2011.06.010

    Article  CAS  Google Scholar 

  24. Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146–148:28–41. https://doi.org/10.1016/j.mad.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  25. Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195. https://doi.org/10.1074/jbc.M501250200

    Article  CAS  PubMed  Google Scholar 

  26. Bagul PK, Dinda AK, Banerjee SK (2015) Effect of resveratrol on sirtuins expression and cardiac complications in diabetes. Biochem Biophys Res Commun 468(1–2):221–227. https://doi.org/10.1016/j.bbrc.2015.10.126

    Article  CAS  PubMed  Google Scholar 

  27. Wan D, Zhou Y, Wang K, Hou Y, Hou R, Ye X (2016) Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 121:255–262. https://doi.org/10.1016/j.brainresbull.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  28. Poulose N (1852) Raju R (2015) Sirtuin regulation in aging and injury. Biochim Biophys Acta 11:2442–2455. https://doi.org/10.1016/j.bbadis.2015.08.017

    Article  CAS  Google Scholar 

  29. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690. https://doi.org/10.1016/j.cmet.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim I, He YY (2013) Targeting the AMP-activated protein kinase for cancer prevention and therapy. Front Oncol 3:175. https://doi.org/10.3389/fonc.2013.00175

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575. https://doi.org/10.1038/nrc2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Zhao P, Quan N, Wang L, Chen X, Cates C, Rousselle T, Li J (2017) The endotoxemia cardiac dysfunction is attenuated by AMPK/mTOR signaling pathway regulating autophagy. Biochem Biophys Res Commun 492(3):520–527. https://doi.org/10.1016/j.bbrc.2017.08.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gong H, Pang J, Han Y, Dai Y, Dai D, Cai J, Zhang TM (2014) Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol Med Rep 10(6):3296–3302. https://doi.org/10.3892/mmr.2014.2648

    Article  CAS  PubMed  Google Scholar 

  34. Gines C, Cuesta S, Kireev R, Garcia C, Rancan L, Paredes SD, Vara E, Tresguerres JAF (2017) Protective effect of resveratrol against inflammation, oxidative stress and apoptosis in pancreas of aged SAMP8 mice. Exp Gerontol 90:61–70. https://doi.org/10.1016/j.exger.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  35. Aukrust P, Damas JK, Gullestad L (2003) Immunomodulating therapy: new treatment modality in congestive heart failure. Congest Heart Fail 9(2):64–69

    Article  CAS  PubMed  Google Scholar 

  36. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998

    Article  CAS  PubMed  Google Scholar 

  37. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81(4):627–635

    Article  CAS  PubMed  Google Scholar 

  38. Pires BRB, Silva R, Ferreira GM, Abdelhay E (2018) NF-kappaB: two sides of the same coin. Genes (Basel) 9(1):1–24. https://doi.org/10.3390/genes9010024

    Article  CAS  Google Scholar 

  39. Van der Heiden K, Cuhlmann S, le Luong A, Zakkar M, Evans PC (2010) Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond) 118(10):593–605. https://doi.org/10.1042/CS20090557

    Article  CAS  Google Scholar 

  40. Ren Z, Wang L, Cui J, Huoc Z, Xue J, Cui H, Mao Q, Yang R (2013) Resveratrol inhibits NF-κB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie 68(8):689–694

    CAS  PubMed  Google Scholar 

  41. Ungvari Z, Sonntag WE, de Cabo R, Baur JA, Csiszar A (2011) Mitochondrial protection by resveratrol. Exerc Sport Sci Rev 39(3):128–132. https://doi.org/10.1097/JES.0b013e3182141f80

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bonnefont-Rousselot D (2016) Resveratrol and cardiovascular diseases. Nutrients 8(5):250. https://doi.org/10.3390/nu8050250

    Article  CAS  PubMed Central  Google Scholar 

  43. Labinskyy N, Csiszar A, Veress G, Stef G, Pacher P, Oroszi G, Wu J, Ungvari Z (2006) Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem 13(9):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He JZ, Ho JJ, Gingerich S, Courtman DW, Marsden PA, Ward ME (2010) Enhanced translation of heme oxygenase-2 preserves human endothelial cell viability during hypoxia. J Biol Chem 285(13):9452–9461. https://doi.org/10.1074/jbc.M109.077230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han F, Takeda K, Yokoyama S, Ueda H, Shinozawa Y, Furuyama K, Shibahara S (2005) Dynamic changes in expression of heme oxygenases in mouse heart and liver during hypoxia. Biochem Biophys Res Commun 338(1):653–659. https://doi.org/10.1016/j.bbrc.2005.08.100

    Article  CAS  PubMed  Google Scholar 

  46. Akasaka E, Takekoshi S, Horikoshi Y, Toriumi K, Ikoma N, Mabuchi T, Tamiya S, Matsuyama T, Ozawa A (2010) Protein oxidative damage and heme oxygenase in sunlight-exposed human skin: roles of MAPK responses to oxidative stress. Tokai J Exp Clin Med 35(4):152–164

    CAS  PubMed  Google Scholar 

  47. Munoz-Sanchez J, Chanez-Cardenas ME (2014) A review on hemeoxygenase-2: focus on cellular protection and oxygen response. Oxid Med Cell Longev 2014:604981. https://doi.org/10.1155/2014/604981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Araujo JA, Zhang M, Yin F (2012) Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 3:119. https://doi.org/10.3389/fphar.2012.00119

    Article  PubMed  PubMed Central  Google Scholar 

  49. Posa A, Szabo R, Csonka A, Veszelka M, Berko AM, Barath Z, Menesi R, Pavo I, Gyongyosi M, Laszlo F, Kupai K, Varga C (2015) Endogenous estrogen-mediated heme oxygenase regulation in experimental menopause. Oxid Med Cell Longev 2015:429713. https://doi.org/10.1155/2015/429713

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marcantoni E, Di Francesco L, Dovizio M, Bruno A, Patrignani P (2012) Novel insights into the vasoprotective role of heme oxygenase-1. Int J Hypertens 2012:127910. https://doi.org/10.1155/2012/127910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Posa A, Kupai K, Menesi R, Szalai Z, Szabo R, Pinter Z, Palfi G, Gyongyosi M, Berko A, Pavo I, Varga C (2013) Sexual dimorphism of cardiovascular ischemia susceptibility is mediated by heme oxygenase. Oxid Med Cell Longev 2013:521563. https://doi.org/10.1155/2013/521563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Forman K, Vara E, Garcia C, Kireev R, Cuesta S, Acuna-Castroviejo D, Tresguerres JA (2010) Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging. J Pineal Res 49(3):312–320. https://doi.org/10.1111/j.1600-079X.2010.00800.x

    Article  CAS  PubMed  Google Scholar 

  53. Chen CY, Jang JH, Li MH, Surh YJ (2005) Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 331(4):993–1000. https://doi.org/10.1016/j.bbrc.2005.03.237

    Article  CAS  PubMed  Google Scholar 

  54. Wang L, Li H (2017) effect of resveratrol on the Nrf2 and HO-1 expression in diabetic vascular endothelial cells. Int J Clin Exp Med 10(1):8

    Google Scholar 

  55. Liu PL, Tsai JR, Charles AL, Hwang JJ, Chou SH, Ping YH, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, Chong IW (2010) Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol Nutr Food Res 54(Suppl 2):S196-204. https://doi.org/10.1002/mnfr.200900550

    Article  CAS  PubMed  Google Scholar 

  56. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120(9):357–375. https://doi.org/10.1042/CS20100476

    Article  CAS  Google Scholar 

  57. Tresguerres JA, Kireev R, Forman K, Cuesta S, Tresguerres AF, Vara E (2012) Effect of chronic melatonin administration on several physiological parameters from old Wistar rats and SAMP8 mice. Curr Aging Sci 5(3):242–253

    Article  CAS  PubMed  Google Scholar 

  58. Cuesta S, Kireev R, Garcia C, Forman K, Escames G, Vara E, Tresguerres JA (2011) Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model. Mech Ageing Dev 132(11–12):573–582. https://doi.org/10.1016/j.mad.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  59. Farrokhfall K, Hashtroudi MS, Ghasemi A, Mehrani H (2015) Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats. Iran J Basic Med Sci 18(2):115–121

    PubMed  PubMed Central  Google Scholar 

  60. Smith CJ, Santhanam L, Bruning RS, Stanhewicz A, Berkowitz DE, Holowatz LA (2011) Upregulation of inducible nitric oxide synthase contributes to attenuated cutaneous vasodilation in essential hypertensive humans. Hypertension 58(5):935–942. https://doi.org/10.1161/HYPERTENSIONAHA.111.178129

    Article  CAS  PubMed  Google Scholar 

  61. de Belder A, Radomski M, Hancock V, Brown A, Moncada S, Martin J (1995) Megakaryocytes from patients with coronary atherosclerosis express the inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 15(5):637–641

    Article  PubMed  Google Scholar 

  62. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, Marsden PA (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 17(11):2479–2488

    Article  CAS  PubMed  Google Scholar 

  63. Yang YM, Huang A, Kaley G, Sun D (2009) eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol 297(5):H1829-1836. https://doi.org/10.1152/ajpheart.00230.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142(5):288–297. https://doi.org/10.1016/S0022-2143(03)00148-3

    Article  CAS  PubMed  Google Scholar 

  65. Batkai S, Rajesh M, Mukhopadhyay P, Hasko G, Liaudet L, Cravatt BF, Csiszar A, Ungvari Z, Pacher P (2007) Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am J Physiol Heart Circ Physiol 293(2):H909-918. https://doi.org/10.1152/ajpheart.00373.2007

    Article  CAS  PubMed  Google Scholar 

  66. Tower J (2015) Programmed cell death in aging. Ageing Res Rev 23(Pt A):90–100. https://doi.org/10.1016/j.arr.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Phaneuf S, Leeuwenburgh C (2002) Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol 282(2):R423-430. https://doi.org/10.1152/ajpregu.00296.2001

    Article  CAS  PubMed  Google Scholar 

  68. Selman C, Kendaiah S, Gredilla R, Leeuwenburgh C (2003) Increased hepatic apoptosis during short-term caloric restriction is not associated with an enhancement in caspase levels. Exp Gerontol 38(8):897–903

    Article  CAS  PubMed  Google Scholar 

  69. Selman C, Gredilla R, Phaneuf S, Kendaiah S, Barja G, Leeuwenburgh C (2003) Short-term caloric restriction and regulatory proteins of apoptosis in heart, skeletal muscle and kidney of Fischer 344 rats. Biogerontology 4(3):141–147

    Article  CAS  PubMed  Google Scholar 

  70. Kwak HB (2013) Effects of aging and exercise training on apoptosis in the heart. J Exerc Rehabil 9(2):212–219. https://doi.org/10.12965/jer.130002

    Article  PubMed  PubMed Central  Google Scholar 

  71. Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG (1999) A new internal-ribosome-entry-site motif potentiates XIAP- mediated cytoprotection. Nat Cell Biol 1(3):190–192. https://doi.org/10.1038/11109

    Article  CAS  PubMed  Google Scholar 

  72. Zhang C, Feng Y, Qu S, Wei X, Zhu H, Luo Q, Liu M, Chen G, Xiao X (2011) Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 90(3):538–545. https://doi.org/10.1093/cvr/cvr022

    Article  CAS  PubMed  Google Scholar 

  73. Sin TK, Yu AP, Yung BY, Yip SP, Chan LW, Wong CS, Ying M, Rudd JA, Siu PM (2014) Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J Physiol 592(12):2535–2548. https://doi.org/10.1113/jphysiol.2014.271387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Locatelli FM, Kawano T, Iwata H, Aoyama B, Eguchi S, Nishigaki A, Yamanaka D, Tateiwa H, Shigematsu-Locatelli M, Yokoyama M (2018) Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rats. J Pharmacol Sci 137(4):395–402. https://doi.org/10.1016/j.jphs.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  75. Tasatargil A, Tanriover G, Barutcigil A, Turkmen E (2019) Protective effect of resveratrol on methylglyoxal-induced endothelial dysfunction in aged rats. Aging Clin Exp Res 31(3):331–338. https://doi.org/10.1007/s40520-018-0986-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from RETICEF (RETICEFRD12/0043/0032) to JAFT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gredilla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torregrosa-Muñumer, R., Vara, E., Fernández-Tresguerres, J. . et al. Resveratrol supplementation at old age reverts changes associated with aging in inflammatory, oxidative and apoptotic markers in rat heart. Eur J Nutr 60, 2683–2693 (2021). https://doi.org/10.1007/s00394-020-02457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02457-0

Keywords

Navigation