Skip to main content

Advertisement

Log in

A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

In previous studies, short-chain fatty acids (SCFAs) have been found to regulate gut microbiota and change gut barrier status, and the potential positive effects of SCFAs on inflammatory bowel disease (IBD), type 1 diabetes mellitus (T1D), and non-alcoholic fatty liver disease (NAFLD) have also been found, but the role of SCFAs in these three diseases is not clear. This review aims to summarize existing evidence on the effects of SCFAs on IBD, T1D, and NHFLD, and correlates them with gut barrier and gut microbiota (gut microbiota barrier).

Methods

A literature search in PubMed, Web of Science, Springer, and Wiley Online Library up to October 2020 was conducted for all relevant studies published.

Results

This is a retrospective review of 150 applied research articles or reviews. The destruction of gut barrier may promote the development of IBD, T1D, and NAFLD. SCFAs seem to maintain the gut barrier by promoting the growth of intestinal epithelial cells, strengthening the intestinal tight connection, and regulating the activities of gut microbiota and immune cells, which might result possible beneficial effects on the above three diseases at a certain dose.

Conclusions

Influencing gut barrier health may be a bridge for SCFAs (especially butyrate) to have positive effects on IBD, T1D, and NAFLD. It is expected that this article can provide new ideas for the subsequent research on the treatment of diseases by SCFAs and help SCFAs be better applied to precise and personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SCFAs:

Short-chain fatty acids

IBD:

Inflammatory bowel disease

T1D:

Type 1 diabetes mellitus

NAFLD:

Non-alcoholic fatty liver disease

HDAC:

Inhibiting histone deacetylase

GPR:

G protein-coupled receptors on cells

IECs:

Intestinal epithelial cells

TJ:

Tight junction

AJ:

Adhesion junction

Treg:

Regulatory T cell

Th:

T helper cell

IL-x:

Interleukin-x

IFN-γ:

Interferon-γ

TLR2:

Toll-like receptor 2

TRAF6:

TNF receptor-related factor 6

MCD:

Methionine choline deficiency

ERK:

Extracellular-regulated protein kinases

NASH:

Non-alcoholic steatohepatitis

DSS:

Dextran sulfate sodium

NF-κ b:

Nuclear factor-κ b

References

  1. Scheppach W (1994) Effects of short chain fatty acids on gut morphology and function. Gut 35(1 Suppl):S35-38. https://doi.org/10.1136/gut.35.1_suppl.s35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227. https://doi.org/10.1136/gut.28.10.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A, Wells JM (2014) Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol 14:189. https://doi.org/10.1186/s12876-014-0189-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Postler TS, Ghosh S (2017) Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab 26(1):110–130

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ (2012) The warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48(4):612–626

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gurav A, Sivaprakasam S, Bhutia YD, Boettger T, Singh N, Ganapathy V (2015) Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem J 469:267–278

    CAS  PubMed  Google Scholar 

  7. Kaisar MMM, Pelgrom LR, van der Ham AJ, Yazdanbakhsh M, Everts B (2017) Butyrate conditions human Dendritic cells to Prime Type 1 regulatory T cells via both histone Deacetylase inhibition and G Protein-coupled receptor 109A signaling. Front Immunol 8:1429. https://doi.org/10.3389/fimmu.2017.01429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319. https://doi.org/10.1074/jbc.M211609200

    Article  CAS  PubMed  Google Scholar 

  9. Namkung H, Yu H, Gong J, Leeson S (2011) Antimicrobial activity of butyrate glycerides toward salmonella typhimurium and clostridium perfringens. Poult Sci 90(10):2217–2222. https://doi.org/10.3382/ps.2011-01498

    Article  CAS  PubMed  Google Scholar 

  10. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277. https://doi.org/10.3389/fimmu.2019.00277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dou X, Gao N, Lan J, Han J, Yang Y, Shan A (2020) TLR2/EGFR are two sensors for pBD3 and pEP2C induction by sodium butyrate independent of HDAC inhibition. J Agric Food Chem 68(2):512–522. https://doi.org/10.1021/acs.jafc.9b06569

    Article  CAS  PubMed  Google Scholar 

  12. Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, Taylor JR, Zan H, Casali P (2020) B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nature Commun 11(1):60. https://doi.org/10.1038/s41467-019-13603-6

    Article  CAS  Google Scholar 

  13. Wu W, Xiao ZB, An WY, Dong YY, Zhang BK (2018) Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. Plos One 13(5):e0197762. https://doi.org/10.1371/journal.pone.0197762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oh TJ, Sul WJ, Oh HN, Lee YK, Lim HL, Choi SH, Park KS, Jang HC (2019) Butyrate attenuated fat gain through gut microbiota modulation in db/db mice following dapagliflozin treatment. Sci Rep 9:20300. https://doi.org/10.1038/s41598-019-56684-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia JL, Nie L, Liu Y (2020) Butyrate alleviates inflammatory response and NF-kappa B activation in human degenerated intervertebral disc tissues. Int Immunopharmacol 78:106004. https://doi.org/10.1038/s41598-019-56684-5

    Article  CAS  PubMed  Google Scholar 

  16. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420. https://doi.org/10.1038/nri2316

    Article  CAS  PubMed  Google Scholar 

  17. Rees WD, Sly LM, Steiner TS (2020) How do immune and mesenchymal cells influence the intestinal epithelial cell compartment in inflammatory bowel disease? Let’s crosstalk about it! J Leukoc Biol. https://doi.org/10.1002/jlb.3mir0120-567r

    Article  PubMed  Google Scholar 

  18. Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, Casado Bedmar M, Vicario M (2015) The intestinal barrier function and its involvement in digestive disease. Revista espanola de enfermedades digestivas : organo oficial de la Sociedad Espanola de Patologia Digestiva 107(11):686–696. https://doi.org/10.17235/reed.2015.3846/2015

    Article  CAS  Google Scholar 

  19. Scaldaferri F, Pizzoferrato M, Gerardi V, Lopetuso L, Gasbarrini A (2012) The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol 46(Suppl):S12-17. https://doi.org/10.1097/MCG.0b013e31826ae849

    Article  CAS  PubMed  Google Scholar 

  20. Peng LY, Li ZR, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139(9):1619–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang XZ, Li ZR, Zhu LB, Huang HY, Hou LL, Lin J (2014) Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model. J Pediatr Gastr Nutr 59(2):264–269

    CAS  Google Scholar 

  22. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119. https://doi.org/10.1111/j.1365-2036.2007.03562.x

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, Wang J, He T, Becker S, Zhang GL, Li DF, Ma X (2018) Butyrate: a double-edged sword for health? Adv Nutr 9(1):21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369(9573):1641–1657. https://doi.org/10.1016/S0140-6736(07)60751-X

    Article  CAS  PubMed  Google Scholar 

  25. Michielan A, D’Inca R (2015) Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediat Inflamm. https://doi.org/10.1155/2015/628157

    Article  Google Scholar 

  26. Salim SY, Soderholm JD (2011) Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 17(1):362–381. https://doi.org/10.1002/ibd.21403

    Article  PubMed  Google Scholar 

  27. Noth R, Stüber E, Häsler R, Nikolaus S, Kühbacher T, Hampe J, Bewig B, Schreiber S, Arlt A (2012) Anti-TNF-α antibodies improve intestinal barrier function in Crohn’s disease. J Crohn’s Colitis 6(4):464–469. https://doi.org/10.1016/j.crohns.2011.10.004

    Article  Google Scholar 

  28. Chen GX, Ran X, Li B, Li YH, He DW, Huang BX, Fu SP, Liu JX, Wang W (2018) Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. Ebiomedicine 30:317–325

    PubMed  PubMed Central  Google Scholar 

  29. Zou X, Ji J, Qu H, Wang J, Shu DM, Wang Y, Liu TF, Li Y, Luo CL (2019) Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult Sci 98(10):4449–4456. https://doi.org/10.3382/ps/pez279

    Article  CAS  PubMed  Google Scholar 

  30. Liu CS, Liang X, Wei XH, Jin Z, Chen FL, Tang QF, Tan XM (2019) Gegen qinlian decoction treats diarrhea in piglets by modulating gut microbiota and short-chain fatty acids. Front Microbiol 10:825. https://doi.org/10.3389/fmicb.2019.00825

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Belle TL, Coppieters KT, Von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91(1):79–118

    PubMed  Google Scholar 

  32. de Kort S, Keszthelyi D, Masclee AAM (2011) Leaky gut and diabetes mellitus: what is the link? Obes Rev 12(6):449–458

    PubMed  Google Scholar 

  33. Quesada-Vazquez S, Aragones G, Del Bas JM, Escote X (2020) Diet, gut microbiota and non-alcoholic fatty liver disease: Three parts of the same axis. Cells. https://doi.org/10.3390/cells9010176

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou D, Fan JG (2019) Microbial metabolites in non-alcoholic fatty liver disease. World J Gastroenterol 25(17):2019–2028. https://doi.org/10.3748/wjg.v25.i17.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cui Y, Wang Q, Chang R, Zhou X, Xu C (2019) Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota. J Agric Food Chem 67(10):2754–2762. https://doi.org/10.1021/acs.jafc.9b00080

    Article  CAS  PubMed  Google Scholar 

  36. Mandaliya DK, Seshadri S (2019) Short chain fatty acids, pancreatic dysfunction and type 2 diabetes (vol 19, pg 280, 2019). Pancreatology 19(4):616–616

    Google Scholar 

  37. Rosado CP, Rosa VHC, Martins BC, Soares AC, Santos IB, Monteiro EB, Moura-Nunes N, da Costa CA, Mulder ADP, Daleprane JB (2020) Resistant starch from green banana (Musa sp.) attenuates non-alcoholic fat liver accumulation and increases short-chain fatty acids production in high-fat diet-induced obesity in mice. Int J Biol Macromol 145:1066–1072

    CAS  PubMed  Google Scholar 

  38. Vancamelbeke M, Vermeire S (2017) The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 11(9):821–834. https://doi.org/10.1080/17474124.2017.1343143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131(1):117–129. https://doi.org/10.1053/j.gastro.2006.04.020

    Article  CAS  PubMed  Google Scholar 

  40. Brandtzaeg P (1995) Molecular and cellular aspects of the secretory immunoglobulin system. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 103(1):1–19. https://doi.org/10.1111/j.1699-0463.1995.tb01073.x

    Article  CAS  PubMed  Google Scholar 

  41. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368. https://doi.org/10.1038/nrmicro2546

    Article  CAS  PubMed  Google Scholar 

  42. Jakobsson HE, Rodriguez-Pineiro AM, Schutte A, Ermund A, Boysen P, Bemark M, Sommer F, Backhed F, Hansson GC, Johansson ME (2015) The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 16(2):164–177. https://doi.org/10.15252/embr.201439263

    Article  CAS  PubMed  Google Scholar 

  43. Pelaseyed T, Bergstrom JH, Gustafsson JK, Ermund A, Birchenough GM, Schutte A, van der Post S, Svensson F, Rodriguez-Pineiro AM, Nystrom EE, Wising C, Johansson ME, Hansson GC (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20. https://doi.org/10.1111/imr.12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ugolev AM, De Laey P (1973) Membrane digestion. A concept of enzyme hydrolysis on cell membranes. Biochimica et biophysica acta 300(2):105–128. https://doi.org/10.1016/0304-4157(73)90001-4

    Article  CAS  PubMed  Google Scholar 

  45. Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, Usui Y, Hatano N, Shinohara M, Saito Y, Murata Y, Matozaki T (2016) Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids. PLoS ONE. https://doi.org/10.1371/journal.pone.0156334

    Article  PubMed  PubMed Central  Google Scholar 

  46. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124(1):3–20. https://doi.org/10.1016/j.jaci.2009.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiesslich R, Goetz M, Angus EM, Hu Q, Guan Y, Potten C, Allen T, Neurath MF, Shroyer NF, Montrose MH, Watson AJ (2007) Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology 133(6):1769–1778. https://doi.org/10.1053/j.gastro.2007.09.011

    Article  PubMed  Google Scholar 

  48. Eisenhoffer GT, Loftus PD, Yoshigi M, Otsuna H, Chien CB, Morcos PA, Rosenblatt J (2012) Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484(7395):546–549. https://doi.org/10.1038/nature10999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parker A, Vaux L, Patterson AM, Modasia A, Muraro D, Fletcher AG, Byrne HM, Maini PK, Watson AJM, Pin C (2019) Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation. Cell Death Dis 10:108. https://doi.org/10.1038/s41419-018-1275-5

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(4):361–367. https://doi.org/10.1038/86373

    Article  CAS  PubMed  Google Scholar 

  51. Li Z, Zhang C, Zhou Z, Zhang J, Zhang J, Tian Z (2012) Small intestinal intraepithelial lymphocytes expressing CD8 and T cell receptor gammadelta are involved in bacterial clearance during Salmonella enterica serovar Typhimurium infection. Infect Immun 80(2):565–574. https://doi.org/10.1128/IAI.05078-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS (2005) Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 102(1):99–104

    CAS  PubMed  Google Scholar 

  53. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809. https://doi.org/10.1038/nri2653

    Article  CAS  PubMed  Google Scholar 

  54. Cirera I, Bauer TM, Navasa M, Vila J, Grande L, Taura P, Fuster J, Garcia-Valdecasas JC, Lacy A, Suarez MJ, Rimola A, Rodes J (2001) Bacterial translocation of enteric organisms in patients with cirrhosis. J Hepatol 34(1):32–37. https://doi.org/10.1016/s0168-8278(00)00013-1

    Article  CAS  PubMed  Google Scholar 

  55. Valadez JMA, Rivera-Espinosa L, Mendez-Guerrero O, Chavez-Pacheco JL, Juarez IG, Torre A (2016) Intestinal permeability in a patient with liver cirrhosis. Ther Clin Risk Manag 12:1729–1748

    CAS  Google Scholar 

  56. Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62(5):1589–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Micr 54:1469–1476

    CAS  Google Scholar 

  58. Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12(2):304–314. https://doi.org/10.1111/j.1462-2920.2009.02066.x

    Article  CAS  PubMed  Google Scholar 

  59. Lu YY, Fan CN, Li P, Lu YF, Chang XL, Qi KM (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep 6(2016):37589. https://doi.org/10.1038/srep37589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu CX, Liu SJ, Chen LQ, Shen J, Niu YM, Wang TY, Zhang WQ, Fu L (2019) Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism. J Endocrinol 243(2):125–135

    CAS  PubMed  Google Scholar 

  61. Zhai SX, Qin S, Li LL, Zhu LM, Zou ZQ, Wang L (2019) Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice. Fems Microbiol Lett 366(13):153. https://doi.org/10.1093/femsle/fnz153

    Article  CAS  Google Scholar 

  62. Zhao L, Zhang Q, Ma WN, Tian F, Shen HY, Zhou MM (2017) A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct 8(12):4644–4656

    CAS  PubMed  Google Scholar 

  63. He JW, Guo HD, Zheng WJ, Yao W (2019) Effects of stress on the mucus-microbial interactions in the gut. Curr Protein Pept Sc 20(2):155–163. https://doi.org/10.2174/1389203719666180514152406

    Article  CAS  Google Scholar 

  64. Xing PY, Pettersson S, Kundu P (2020) Microbial metabolites and intestinal stem cells tune intestinal homeostasis. Proteomics. https://doi.org/10.1002/Pmic.201800419

    Article  PubMed  Google Scholar 

  65. Satokari R (2015) Contentious host-microbiota relationship in inflammatory bowel disease - can foes become friends again? Scand J Gastroentero 50(1):34–42

    CAS  Google Scholar 

  66. Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, De Vos M, Boon N, Van de Wiele T (2017) Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep 7:11450. https://doi.org/10.1038/s41598-017-11734-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou D, Pan Q, Xin F-Z, Zhang R-N, He C-X, Chen G-y, Liu C, Chen Y-W, Fan J-G (2017) Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J Gastroenterol 23:60. https://doi.org/10.3748/wjg.v23.i1.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lamas A, Regal P, Vazquez B, Cepeda A, Franco CM (2019) Short chain fatty acids commonly produced by gut microbiota influence salmonella enterica motility, biofilm formation, and gene expression. Antibiotics. https://doi.org/10.3390/antibiotics8040265

    Article  PubMed  PubMed Central  Google Scholar 

  69. da Silva BC, Vieira FD, Mourino JLP, Bolivar N, Seiffert WQ (2016) Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquac Res 47(2):612–623

    Google Scholar 

  70. Alva-Murillo N, Ochoa-Zarzosa A, Lopez-Meza JE (2012) Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 155(2–4):324–331

    CAS  PubMed  Google Scholar 

  71. Sunkara LT, Jiang W, Zhang G (2012) Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS ONE 7(11):e49558. https://doi.org/10.1371/journal.pone.0049558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jung TH, Park JH, Jeon WM, Han KS (2015) Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr Res Pract 9(4):343–349. https://doi.org/10.4162/nrp.2015.9.4.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dekker J, Rossen JWA, Buller HA, Einerhand AWC (2002) The MUC family: an obituary. Trends Biochem Sci 27(3):126–131

    CAS  PubMed  Google Scholar 

  74. Williams SJ, Munster DJ, Quin RJ, Gotley DC, McGuckin MA (1999) The MUC3 gene encodes a transmembrane mucin and is alternatively spliced. Biochem Bioph Res Co 261(1):83–89

    CAS  Google Scholar 

  75. Gaudier E, Jarry A, Blottiere HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C, Hoebler C (2004) Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastr L 287(6):G1168–G1174

    CAS  Google Scholar 

  76. Augenlicht L, Shi L, Mariadason J, Laboisse C, Velcich A (2003) Repression of MUC2 gene expression by butyrate, a physiological regulator of intestinal cell maturation. Oncogene 22(32):4983–4992

    CAS  PubMed  Google Scholar 

  77. Wrzosek L, Miquel S, Noordine ML, Bouet S, Chevalier-Curt MJ, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M (2013) Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11:61. https://doi.org/10.1186/1741-7007-11-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaden-Volynets V, Gunther C, Zimmermann J, Beisner J, Becker C, Bischoff SC (2019) Deletion of the Casp8 gene in mice results in ileocolitis, gut barrier dysfunction, and malassimilation, which can be partially attenuated by inulin or sodium butyrate. Am J Physiol Gastr L 317(4):G493–G507

    CAS  Google Scholar 

  79. Okumura R, Takeda K (2018) Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regener 38:5. https://doi.org/10.1186/s41232-018-0063-z

    Article  CAS  Google Scholar 

  80. Chen JL, Zhai ZY, Long HR, Yang GM, Deng BC, Deng JP (2020) Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides 123:170177. https://doi.org/10.1016/j.peptides.2019.170177

    Article  CAS  PubMed  Google Scholar 

  81. Cheng D, Xu JH, Li JY, Wang SY, Wu TF, Chen QK, Yu T (2018) Butyrate ameliorated-NLRC3 protects the intestinal barrier in a GPR43-dependent manner. Exp Cell Res 368(1):101–110. https://doi.org/10.1016/j.yexcr.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  82. Yan H, Ajuwon KM (2017) Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS ONE 12(6):e0179586. https://doi.org/10.1371/journal.pone.0179586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nastasi C, Fredholm S, Willerslev-Olsen A, Hansen M, Bonefeld CM, Geisler C, Andersen MH, Ødum N, Woetmann A (2017) Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci Rep 7(1):14516. https://doi.org/10.1038/s41598-017-15099-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, Biagi E, Andersen MH, Brigidi P, Odum N, Litman T, Woetmann A (2015) The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep 5:16148. https://doi.org/10.1038/srep16148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park J, Kim M, Kang S, Jannasch A, Cooper B, Patterson J, Kim C (2014) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. https://doi.org/10.1038/mi.2014.44

    Article  PubMed  PubMed Central  Google Scholar 

  86. Martin-Gallausiaux C, Beguet-Crespel F, Marinelli L, Jamet A, Ledue F, Blottiere HM, Lapaque N (2018) Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci Rep. https://doi.org/10.1038/S41598-018-28048-Y

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E, McCullagh J, Sansom SN, Arancibia-Carcamo CV, Uhlig HH, Powrie F (2019) The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50(2):432-445e437. https://doi.org/10.1016/j.immuni.2018.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282-U1119

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Clayburgh DR, Shen L, Turner JR (2004) A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 84(3):282–291

    CAS  PubMed  Google Scholar 

  90. Fritsch J, Abreu M (2019) The Microbiota and the immune response: what is the chicken and what is the egg? Gastrointest Endosc Clin N Am. https://doi.org/10.1016/j.giec.2019.02.005

    Article  PubMed  Google Scholar 

  91. Hilsden RJ, Meddings JB, Hardin J, Gall DG, Sutherland LR (1999) Intestinal permeability and postheparin plasma diamine oxidase activity in the prediction of Crohn’s disease relapse. Inflamm Bowel Dis 5(2):85–91

    CAS  PubMed  Google Scholar 

  92. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56(1):61–72. https://doi.org/10.1136/gut.2006.094375

    Article  CAS  PubMed  Google Scholar 

  93. Di Sabatino A, Ciccocioppo R, Luinetti O, Ricevuti L, Morera R, Cifone AG, Solcia E, Corazza GR (2003) Increased enterocyte apoptosis in inflamed areas of Crohn’s disease. Dis Colon Rectum 46(11):1498–1507

    PubMed  Google Scholar 

  94. Coufal S, Galanova N, Bajer L, Gajdarova Z, Schierova D, Zakostelska ZJ, Kostovcikova K, Jackova Z, Stehlikova Z, Drastich P, Tlaskalova-Hogenova H, Kverka M (2019) Inflammatory bowel disease types differ in markers of inflammation, gut barrier and in specific anti-bacterial response. Cells. https://doi.org/10.3390/cells8070719

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kapsoritakis A, Kapsoritaki A, Davidi I, Lotis V, Manolakis A, Mylonis P, Theodoridou A, Germenis A, Potamianos S (2008) Imbalance of tissue inhibitors of metalloproteinases (TIMP) – 1 and – 4 serum levels, in patients with inflammatory bowel disease. BMC Gastroenterol 8:55. https://doi.org/10.1186/1471-230X-8-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Luo XP, Yue B, Yu ZL, Ren YJ, Zhang J, Ren JY, Wang ZT, Dou W (2020) Obacunone Protects Against Ulcerative Colitis in Mice by Modulating Gut Microbiota, Attenuating TLR4/NF-kappa B Signaling Cascades, and Improving Disrupted Epithelial Barriers. Front Microbiol 11:497. https://doi.org/10.3389/fmicb.2020.00497

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sayoc-Becerra A, Krishnan M, Fan SJ, Jimenez J, Hernandez R, Gibson K, Preciado R, Butt G, McCole DF (2020) The JAK-inhibitor tofacitinib rescues human intestinal epithelial cells and colonoids from cytokine-induced barrier dysfunction. Inflamm Bowel Dis 26(3):407–422

    PubMed  Google Scholar 

  98. Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M, Schulzke JD (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113(11):2085–2090

    CAS  PubMed  Google Scholar 

  99. Wang Y, Xie Q, Zhang Y, Ma W, Ning K, Xiang JY, Cui J, Xiang H (2020) Combination of probiotics with different functions alleviate DSS-induced colitis by regulating intestinal microbiota, IL-10, and barrier function. Appl Microbiol Biotechnol 104(1):335–349. https://doi.org/10.1007/s00253-019-10259-6

    Article  CAS  PubMed  Google Scholar 

  100. Zhang MM, Zhou Q, Dorfman RG, Huang XL, Fan TT, Zhang H, Zhang J, Yu CG (2016) Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol 16:84. https://doi.org/10.1186/s12876-016-0500-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial hif augments tissue barrier function. Cell Host Microbe 17(5):662–671

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Valenzano MC, DiGuilio K, Mercado J, Teter M, To J, Ferraro B, Mixson B, Manley I, Baker V, Moore BA, Wertheimer J, Mullin JM (2015) Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients. Plos One 10(7):e0133926. https://doi.org/10.1371/journal.pone.0133926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bordonaro M, Lazarova DL, Sartorelli AC (2008) Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle 7(9):1178–1183. https://doi.org/10.4161/cc.7.9.5818

    Article  CAS  PubMed  Google Scholar 

  104. Zhao Y, Chen FD, Wu W, Sun MM, Bilotta AJ, Yao SX, Xiao Y, Huang XS, Eaves-Pyles TD, Golovko G, Fofanov Y, D’Souza W, Zhao QH, Liu ZJ, Cong YZ (2018) GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol 11(3):752–762

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 111(6):2247–2252. https://doi.org/10.1073/pnas.1322269111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang TY, Chen HY, Zhu W, Sartor RB, Boedeker EC, Harpaz N, Pace NR, Li E (2011) Disease Phenotype and Genotype Are Associated with Shifts in Intestinal-associated Microbiota in Inflammatory Bowel Diseases. Inflamm Bowel Dis 17(1):179–184

    PubMed  Google Scholar 

  107. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmins KN, Schreiber S (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5):685–693

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Goncalves P, Araujo JR, Di Santo JP (2018) A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 24(3):558–572

    PubMed  Google Scholar 

  109. Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R, Vermeire S, Van Immerseel F (2013) Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62(12):1745–1752

    CAS  PubMed  Google Scholar 

  110. Turroni F, Milani C, Duranti S, Mancabelli L, Mangifesta M, Viappiani A, Lugli GA, Ferrario C, Gioiosa L, Ferrarini A, Li J, Palanza P, Delledonne M, van Sinderen D, Ventura M (2016) Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. Isme J 10(7):1656–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Simeoli R, Raso GM, Pirozzi C, Lama A, Santoro A, Russo R, Montero-Melendez T, Canani RB, Calignano A, Perretti M, Meli R (2017) An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. Brit J Pharmacol 174(11):1484–1496

    CAS  Google Scholar 

  112. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383(9911):69–82

    PubMed  Google Scholar 

  113. Gulden E, Ihira M, Ohashi A, Reinbeck AL, Freudenberg MA, Kolb H, Burkart V (2013) Toll-Like Receptor 4 Deficiency Accelerates the Development of Insulin-Deficient Diabetes in Non-Obese Diabetic Mice. Plos One 8(9):e75385. https://doi.org/10.1371/journal.pone.0075385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, Arreguin-Cano J, Strom A, Blaut M, Backhed F, Burkart V, Roden M (2020) Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J Biol Chem 295(4):969–980

    PubMed  Google Scholar 

  115. Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35(5):365–368

    CAS  PubMed  Google Scholar 

  116. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Carteni M, Generoso M, Iafusco D, Prisco F, Laghi F, Riegler G, Carratu R, Counts D, Fasano A (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55(5):1443–1449

    CAS  PubMed  Google Scholar 

  117. Secondulfo M, Iafusco D, Carratu R, deMagistris L, Sapone A, Generoso M, Mezzogiorno A, Sasso FC, Carteni M, De Rosa R, Prisco F, Esposito V (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Digest Liver Dis 36(1):35–45

    CAS  Google Scholar 

  118. Sorini C, Cosorich I, Lo Conte M, De Giorgi L, Facciotti F, Luciano R, Rocchi M, Ferrarese R, Sanvito F, Canducci F, Falcone M (2019) Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci USA 116(30):15140–15149. https://doi.org/10.1073/pnas.1814558116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8(6):435–446

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen K, Chen H, Faas MM, de Haan BJ, Li JH, Xiao P, Zhang H, Diana J, de Vos P, Sun J (2017) Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Mol Nutr Food Res 61(8):1601006. https://doi.org/10.1002/mnfr.201601006

    Article  CAS  Google Scholar 

  121. Hansen CHF, Larsen CS, Petersson HO, Zachariassen LF, Vegge A, Lauridsen C, Kot W, Krych L, Nielsen DS, Hansen AK (2019) Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice. Diabetologia 62(9):1689–1700. https://doi.org/10.1007/s00125-019-4910-5

    Article  CAS  PubMed  Google Scholar 

  122. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu CY, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109-U1110

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Harbison JE, Roth-Schulze AJ, Giles LC, Tran CD, Ngui KM, Penno MA, Thomson RL, Wentworth JM, Colman PG, Craig ME, Morahan G, Papenfuss AT, Barry SC, Harrison LC, Couper JJ (2019) Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatric Diabetes 20(5):574–583. https://doi.org/10.1111/pedi.12865

    Article  CAS  PubMed  Google Scholar 

  124. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, Lernmark A, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Stewart CJ, Ajami NJ, Petrosino JF, Gevers D, Lahdesmaki H, Vlamakis H, Huttenhower C, Xavier RJ (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562(7728):589–594. https://doi.org/10.1038/s41586-018-0620-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wood NJ (2012) Microbiota: Dysbiosis driven by inflammasome deficiency exacerbates hepatic steatosis and governs rate of NAFLD progression. Nature Rev Gastroenterol Hepatol 9(3):123. https://doi.org/10.1038/nrgastro.2012.21

    Article  Google Scholar 

  126. Miura K, Ohnishi H (2014) Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 20(23):7381–7391. https://doi.org/10.3748/wjg.v20.i23.7381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L, Penna G, Rescigno M (2019) Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 71(6):1216–1228. https://doi.org/10.1016/j.jhep.2019.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L (2016) Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 6:32002. https://doi.org/10.1038/srep32002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ning LG, Liu RQ, Lou XH, Du HJ, Chen WG, Zhang FM, Li S, Chen XY, Xu GQ (2019) Association between Helicobacter pylori infection and nonalcoholic fatty liver disease: a systemic review and meta-analysis. Eur J Gastroen Hepat 31(7):735–742

    Google Scholar 

  130. Natividad JM, Lamas B, Pham HP, Michel ML, Rainteau D, Bridonneau C, da Costa G, Vlieg JV, Sovran B, Chamignon C, Planchais J, Richard ML, Langella P, Veiga P, Sokol H (2018) Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nature Commun 9:2802. https://doi.org/10.1038/s41467-018-05249-7

    Article  CAS  Google Scholar 

  131. Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA (2016) Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology 151(4):733-746 e712. https://doi.org/10.1053/j.gastro.2016.06.022

    Article  CAS  PubMed  Google Scholar 

  132. Hundertmark J, Krenkel O, Tacke F (2018) Adapted immune responses of myeloid-derived cells in fatty liver disease. Front Immunol 9:2418. https://doi.org/10.3389/fimmu.2018.02418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pleguezuelo M, Benitez JM, Jurado J, Montero JL, De la Mata M (2013) Diagnosis and management of bacterial infections in decompensated cirrhosis. World J Hepatol 5(1):16–25. https://doi.org/10.4254/wjh.v5.i1.16

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li Y, Liu T, Yan C, Xie R, Guo Z, Wang S, Zhang Y, Li Z, Wang B, Cao H (2018) Diammonium glycyrrhizinate protects against nonalcoholic fatty liver disease in mice through modulation of gut microbiota and restoration of intestinal barrier. Mol Pharm 15(9):3860–3870. https://doi.org/10.1021/acs.molpharmaceut.8b00347

    Article  CAS  PubMed  Google Scholar 

  135. Jin M, Zhu Y, Shao D, Zhao K, Xu C, Li Q, Yang H, Huang Q, Shi J (2017) Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats. Int J Biol Macromol 94(Pt A):1–9. https://doi.org/10.1016/j.ijbiomac.2016.09.099

    Article  CAS  PubMed  Google Scholar 

  136. Ye JZ, Lv LX, Wu WR, Li YT, Shi D, Fang DQ, Guo FF, Jiang HY, Yan R, Ye WC, Li LJ (2018) Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Front Microbiol 9:1967. https://doi.org/10.3389/fmicb.2018.01967

    Article  PubMed  PubMed Central  Google Scholar 

  137. Song JJ, Tian WJ, Kwok LY, Wang YL, Shang YN, Menghe B, Wang JG (2017) Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. Br J Nutr 118(7):481–492. https://doi.org/10.1017/S0007114517002380

    Article  CAS  PubMed  Google Scholar 

  138. Patterson AM, Mulder IE, Travis AJ, Lan A, Cerf-Bensussan N, Gaboriau-Routhiau V, Garden K, Logan E, Delday MI, Coutts AGP, Monnais E, Ferraria VC, Inoue R, Grant G, Aminov RI (2017) Human gut symbiont roseburia hominis promotes and regulates innate immunity. Front Immunol 8:1166. https://doi.org/10.3389/fimmu.2017.01166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang JH, Bose S, Lim SK, Ansari A, Chin YW, Choi HS, Kim H (2017) Houttuynia cordata facilitates metformin on ameliorating insulin resistance associated with gut microbiota alteration in OLETF rats. Genes-Basel 8(10):239. https://doi.org/10.3390/genes8100239

    Article  CAS  PubMed Central  Google Scholar 

  140. Jin CJ, Sellmann C, Engstler J, Ziegenhardt D, Bergheim I (2015) Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). British J Nutr 114:1–11. https://doi.org/10.1017/S0007114515003621

    Article  CAS  Google Scholar 

  141. Song M, Xia B, Li J (2006) Effects of topical treatment of sodium butyrate and 5-aminosalicylic acid on expression of trefoil factor 3, interleukin 1beta, and nuclear factor kappaB in trinitrobenzene sulphonic acid induced colitis in rats. Postgrad Med J 82(964):130–135. https://doi.org/10.1136/pgmj.2005.037945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Diao H, Jiao AR, Yu B, Mao XB, Chen DW (2019) Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr 14:4. https://doi.org/10.1186/s12263-019-0626-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xu YH, Gao CL, Guo HL, Zhang WQ, Huang W, Tang SS, Gan WJ, Xu Y, Zhou H, Zhu Q (2018) Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice. J Endocrinol 238(3):231–244. https://doi.org/10.1530/JOE-18-0137

    Article  CAS  PubMed  Google Scholar 

  144. Lin J, Peng L, Itzkowitz S, Holzman IR, Babyatsky MW (2005) Short-chain fatty acid induces intestinal mucosal injury in newborn rats and down-regulates intestinal trefoil factor gene expression in vivo and in vitro. J Pediatr Gastroenterol Nutr 41(5):607–611. https://doi.org/10.1097/01.mpg.0000179659.09210.ff

    Article  CAS  PubMed  Google Scholar 

  145. Bentley-Hewitt KL, Blatchford PA, Parkar SG, Ansell J, Pernthaner A (2012) Digested and fermented green kiwifruit increases human beta-defensin 1 and 2 production in vitro. Plant Food Hum Nutr 67(3):208–214

    CAS  Google Scholar 

  146. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ, Colgan SP (2017) Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J Immunol 199(8):2976–2984. https://doi.org/10.4049/jimmunol.1700105

    Article  CAS  PubMed  Google Scholar 

  147. Qin SM, Zhang KY, Ding XM, Bai SP, Wang JP, Zeng QF (2019) Effect of dietary graded resistant potato starch levels on growth performance, plasma cytokines concentration, and intestinal health in meat ducks. Poult Sci 98(9):3523–3532. https://doi.org/10.3382/ps/pez186

    Article  CAS  PubMed  Google Scholar 

  148. Maurer LH, Cazarin CBB, Quatrin A, Minuzzi NM, Costa EL, Morari J, Velloso LA, Leal RF, Rodrigues E, Bochi VC, Marstica MR, Emanuelli T (2019) Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound polyphenols. Food Res Int 123:425–439

    CAS  PubMed  Google Scholar 

  149. Fei Y, Wang Y, Pang Y, Wang W, Zhu D, Xie M, Lan S, Wang Z (2019) Xylooligosaccharide modulates gut microbiota and alleviates colonic inflammation caused by high fat diet induced obesity. Front Physiol 10:1601. https://doi.org/10.3389/fphys.2019.01601

    Article  PubMed  Google Scholar 

  150. Perdijk O, van Baarlen P, Fernandez-Gutierrez MM, van den Brink E, Schuren FHJ, Brugman S, Savelkoul HFJ, Kleerebezem M, van Neerven RJJ (2019) Sialyllactose and galactooligosaccharides promote epithelial barrier functioning and distinctly modulate microbiota composition and short chain fatty acid production in vitro. Front Immunol 10:94. https://doi.org/10.3389/fimmu.2019.00094

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank my collaborators for their support and help.

Funding

This research was supported by Key Project of Natural Science Foundation of Zhejiang Province (Grant No. D19C200001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqin Feng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Luo, X., Tang, J. et al. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier. Eur J Nutr 60, 2317–2330 (2021). https://doi.org/10.1007/s00394-020-02431-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02431-w

Keywords

Navigation